Serie de Ramanujan-Sato

En matemáticas, una serie de Ramanujan-Sato[1][2]​ generaliza las fórmulas pi de Ramanujan tales como

1 π = 2 2 99 2 k = 0 ( 4 k ) ! k ! 4 26390 k + 1103 396 4 k {\displaystyle {\frac {1}{\pi }}={\frac {2{\sqrt {2}}}{99^{2}}}\sum _{k=0}^{\infty }{\frac {(4k)!}{k!^{4}}}{\frac {26390k+1103}{396^{4k}}}}

a la forma

1 π = k = 0 s ( k ) A k + B C k {\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }s(k){\frac {Ak+B}{C^{k}}}}

mediante el uso de otras secuencias de enteros bien definidas s ( k ) {\displaystyle s(k)} obedeciendo una cierta relación de recurrencia, secuencias que pueden expresarse en términos de coeficientes binomiales ( n k ) {\displaystyle {\tbinom {n}{k}}} y A , B , C {\displaystyle A,B,C} empleando formas modulares de niveles superiores.

Ramanujan hizo el enigmático comentario de que había "teorías correspondientes", pero solo mucho después H. H. Chan y S. Cooper han encontrado un enfoque general que utilizaba el subgrupo de congruencia modular subyacente Γ 0 ( n ) {\displaystyle \Gamma _{0}(n)} ,[3]​ mientras que G. Almkvist ha encontrado experimentalmente numerosos otros ejemplos también con un método general que utiliza operadores diferenciales.[4]

Los niveles 1-4A fueron dados por Ramanujan (1914),[5]​ el nivel 5 por H. H. Chan y S. Cooper (2012),[3]​ el 6A por Chan, Tanigawa, Yang y Zudilin,[6]​ el 6B por Sato (2002}},[7]​ el 6C por H. Chan, S. Chan y Z. Liu (2004),[1]​ el 6D por H. Chan y H. Verrill (2009),[8]​ el nivel 7 por S. Cooper (2012),[9]​ parte del nivel 8 por Almkvist y Guillera (2012),[2]​ parte del nivel 10 por Y. Yang, y el resto por H. H. Chan y S. Cooper.

La notación jn(t) se deriva de Zagier[10]​ y Tn se refiere a la serie relevante de McKay-Thompson.

Nivel 1

Ramanujan dio ejemplos para los niveles del 1 al 4 en su artículo de 1917. Dado q = e 2 π i τ {\displaystyle q=e^{2\pi i\tau }} como en el resto de este artículo, sea

j ( τ ) = ( E 4 ( τ ) η 8 ( τ ) ) 3 = 1 q + 744 + 196884 q + 21493760 q 2 + j ( τ ) = 432 j ( τ ) + j ( τ ) 1728 j ( τ ) j ( τ ) 1728 = 1 q 120 + 10260 q 901120 q 2 + {\displaystyle {\begin{aligned}j(\tau )&={\Big (}{\tfrac {E_{4}(\tau )}{\eta ^{8}(\tau )}}{\Big )}^{3}={\tfrac {1}{q}}+744+196884q+21493760q^{2}+\dots \\j^{*}(\tau )&=432\,{\frac {{\sqrt {j(\tau )}}+{\sqrt {j(\tau )-1728}}}{{\sqrt {j(\tau )}}-{\sqrt {j(\tau )-1728}}}}={\tfrac {1}{q}}-120+10260q-901120q^{2}+\dots \end{aligned}}}

con la función jota j(t), la serie de Eisenstein E4 y la función eta de Dedekind ?(t). La primera expansión es la serie de McKay-Thompson de clase 1A (sucesión A007240 en OEIS) con a(0) = 744. Téngase en cuenta que, como notó por primera vez J. McKay, el coeficiente del término lineal de j(t) es casi igual a 196883 {\displaystyle 196883} , que es el grado de la representación irreducible no trivial más pequeña del grupo monstruo. Fenómenos similares se observarán en los otros niveles. Sea

s 1 A ( k ) = ( 2 k k ) ( 3 k k ) ( 6 k 3 k ) = 1 , 120 , 83160 , 81681600 , {\displaystyle s_{1A}(k)={\tbinom {2k}{k}}{\tbinom {3k}{k}}{\tbinom {6k}{3k}}=1,120,83160,81681600,\dots } (sucesión A001421 en OEIS)
s 1 B ( k ) = j = 0 k ( 2 j j ) ( 3 j j ) ( 6 j 3 j ) ( k + j k j ) ( 432 ) k j = 1 , 312 , 114264 , 44196288 , {\displaystyle s_{1B}(k)=\sum _{j=0}^{k}{\tbinom {2j}{j}}{\tbinom {3j}{j}}{\tbinom {6j}{3j}}{\tbinom {k+j}{k-j}}(-432)^{k-j}=1,-312,114264,-44196288,\dots }

Entonces las dos funciones y secuencias modulares están relacionadas por

k = 0 s 1 A ( k ) 1 ( j ( τ ) ) k + 1 / 2 = ± k = 0 s 1 B ( k ) 1 ( j ( τ ) ) k + 1 / 2 {\displaystyle \sum _{k=0}^{\infty }s_{1A}(k)\,{\frac {1}{(j(\tau ))^{k+1/2}}}=\pm \sum _{k=0}^{\infty }s_{1B}(k)\,{\frac {1}{(j^{*}(\tau ))^{k+1/2}}}}

si la serie converge y el signo se elige apropiadamente, aunque cuadrar ambos lados elimina fácilmente la ambigüedad. Existen relaciones análogas para los niveles superiores.

Ejemplos:

1 π = 12 i k = 0 s 1 A ( k ) 163 3344418 k + 13591409 ( 640320 3 ) k + 1 / 2 , j ( 1 + 163 2 ) = 640320 3 {\displaystyle {\frac {1}{\pi }}=12\,{\boldsymbol {i}}\,\sum _{k=0}^{\infty }s_{1A}(k)\,{\frac {163\cdot 3344418k+13591409}{(-640320^{3})^{k+1/2}}},\quad j{\Big (}{\tfrac {1+{\sqrt {-163}}}{2}}{\Big )}=-640320^{3}}
1 π = 24 i k = 0 s 1 B ( k ) 3669 + 320 645 ( k + 1 2 ) ( 432 U 645 3 ) k + 1 / 2 , j ( 1 + 43 2 ) = 432 U 645 3 = 432 ( 127 + 5 645 2 ) 3 {\displaystyle {\frac {1}{\pi }}=24\,{\boldsymbol {i}}\,\sum _{k=0}^{\infty }s_{1B}(k)\,{\frac {-3669+320{\sqrt {645}}\,(k+{\tfrac {1}{2}})}{{\big (}{-432}\,U_{645}^{3}{\big )}^{k+1/2}}},\quad j^{*}{\Big (}{\tfrac {1+{\sqrt {-43}}}{2}}{\Big )}=-432\,U_{645}^{3}=-432{\Big (}{\tfrac {127+5{\sqrt {645}}}{2}}{\Big )}^{3}}

y U n {\displaystyle U_{n}} es una unidad fundamental. El primero pertenece a una familia de fórmulas que fueron rigurosamente probadas por los hermanos Chudnovsky en 1989[11]​ y luego se usaron para calcular 10.000 millones de dígitos de p en 2011.[12]​ La segunda fórmula, y las de niveles superiores, fueron establecidas por H. H. Chan y S. Cooper en 2012.[3]

Nivel 2

Usando la notación de Zagier[10]​ para la función modular de nivel 2,

j 2 A ( τ ) = ( ( η ( τ ) η ( 2 τ ) ) 12 + 2 6 ( η ( 2 τ ) η ( τ ) ) 12 ) 2 = 1 q + 104 + 4372 q + 96256 q 2 + 1240002 q 3 + j 2 B ( τ ) = ( η ( τ ) η ( 2 τ ) ) 24 = 1 q 24 + 276 q 2048 q 2 + 11202 q 3 {\displaystyle {\begin{aligned}j_{2A}(\tau )&={\Big (}{\big (}{\tfrac {\eta (\tau )}{\eta (2\tau )}}{\big )}^{12}+2^{6}{\big (}{\tfrac {\eta (2\tau )}{\eta (\tau )}}{\big )}^{12}{\Big )}^{2}={\tfrac {1}{q}}+104+4372q+96256q^{2}+1240002q^{3}+\cdots \\j_{2B}(\tau )&={\big (}{\tfrac {\eta (\tau )}{\eta (2\tau )}}{\big )}^{24}={\tfrac {1}{q}}-24+276q-2048q^{2}+11202q^{3}-\cdots \end{aligned}}}

Téngase en cuenta que el coeficiente del término lineal de j2A(t) es uno más que 4371 {\displaystyle 4371} , que es el grado más pequeño > 1 de las representaciones irreducibles del grupo Baby Monster. Sea

s 2 A ( k ) = ( 2 k k ) ( 2 k k ) ( 4 k 2 k ) = 1 , 24 , 2520 , 369600 , 63063000 , {\displaystyle s_{2A}(k)={\tbinom {2k}{k}}{\tbinom {2k}{k}}{\tbinom {4k}{2k}}=1,24,2520,369600,63063000,\dots } (sucesión A008977 en OEIS)
s 2 B ( k ) = j = 0 k ( 2 j j ) ( 2 j j ) ( 4 j 2 j ) ( k + j k j ) ( 64 ) k j = 1 , 40 , 2008 , 109120 , 6173656 , {\displaystyle s_{2B}(k)=\sum _{j=0}^{k}{\tbinom {2j}{j}}{\tbinom {2j}{j}}{\tbinom {4j}{2j}}{\tbinom {k+j}{k-j}}(-64)^{k-j}=1,-40,2008,-109120,6173656,\dots }

Entonces

k = 0 s 2 A ( k ) 1 ( j 2 A ( τ ) ) k + 1 / 2 = ± k = 0 s 2 B ( k ) 1 ( j 2 B ( τ ) ) k + 1 / 2 {\displaystyle \sum _{k=0}^{\infty }s_{2A}(k)\,{\frac {1}{(j_{2A}(\tau ))^{k+1/2}}}=\pm \sum _{k=0}^{\infty }s_{2B}(k)\,{\frac {1}{(j_{2B}(\tau ))^{k+1/2}}}}

si la serie converge y el signo se elige adecuadamente.

Ejemplos:

1 π = 32 2 k = 0 s 2 A ( k ) 58 455 k + 1103 ( 396 4 ) k + 1 / 2 , j 2 A ( 1 2 58 ) = 396 4 {\displaystyle {\frac {1}{\pi }}=32{\sqrt {2}}\,\sum _{k=0}^{\infty }s_{2A}(k)\,{\frac {58\cdot 455k+1103}{(396^{4})^{k+1/2}}},\quad j_{2A}{\Big (}{\tfrac {1}{2}}{\sqrt {-58}}{\Big )}=396^{4}}
1 π = 16 2 k = 0 s 2 B ( k ) 24184 + 9801 29 ( k + 1 2 ) ( 64 U 29 12 ) k + 1 / 2 , j 2 B ( 1 2 58 ) = 64 ( 5 + 29 2 ) 12 = 64 U 29 12 {\displaystyle {\frac {1}{\pi }}=16{\sqrt {2}}\,\sum _{k=0}^{\infty }s_{2B}(k)\,{\frac {-24184+9801{\sqrt {29}}\,(k+{\tfrac {1}{2}})}{(64\,U_{29}^{12})^{k+1/2}}},\quad j_{2B}{\Big (}{\tfrac {1}{2}}{\sqrt {-58}}{\Big )}=64{\Big (}{\tfrac {5+{\sqrt {29}}}{2}}{\Big )}^{12}=64\,U_{29}^{12}}

La primera fórmula, encontrada por Ramanujan y mencionada al comienzo del artículo, pertenece a una familia probada por D. Bailey y los hermanos Borwein en un artículo de 1989.[13]

Nivel 3

Sea

j 3 A ( τ ) = ( ( η ( τ ) η ( 3 τ ) ) 6 + 3 3 ( η ( 3 τ ) η ( τ ) ) 6 ) 2 = 1 q + 42 + 783 q + 8672 q 2 + 65367 q 3 + j 3 B ( τ ) = ( η ( τ ) η ( 3 τ ) ) 12 = 1 q 12 + 54 q 76 q 2 243 q 3 + 1188 q 4 + {\displaystyle {\begin{aligned}j_{3A}(\tau )&={\Big (}{\big (}{\tfrac {\eta (\tau )}{\eta (3\tau )}}{\big )}^{6}+3^{3}{\big (}{\tfrac {\eta (3\tau )}{\eta (\tau )}}{\big )}^{6}{\Big )}^{2}={\tfrac {1}{q}}+42+783q+8672q^{2}+65367q^{3}+\dots \\j_{3B}(\tau )&={\big (}{\tfrac {\eta (\tau )}{\eta (3\tau )}}{\big )}^{12}={\tfrac {1}{q}}-12+54q-76q^{2}-243q^{3}+1188q^{4}+\dots \\\end{aligned}}}

donde 782 {\displaystyle 782} es el grado más pequeño > 1 de las representaciones irreducibles del grupo de Fischer Fi23; y

s 3 A ( k ) = ( 2 k k ) ( 2 k k ) ( 3 k k ) = 1 , 12 , 540 , 33600 , 2425500 , {\displaystyle s_{3A}(k)={\tbinom {2k}{k}}{\tbinom {2k}{k}}{\tbinom {3k}{k}}=1,12,540,33600,2425500,\dots } (sucesión A184423 en OEIS)
s 3 B ( k ) = j = 0 k ( 2 j j ) ( 2 j j ) ( 3 j j ) ( k + j k j ) ( 27 ) k j = 1 , 15 , 297 , 6495 , 149481 , {\displaystyle s_{3B}(k)=\sum _{j=0}^{k}{\tbinom {2j}{j}}{\tbinom {2j}{j}}{\tbinom {3j}{j}}{\tbinom {k+j}{k-j}}(-27)^{k-j}=1,-15,297,-6495,149481,\dots }

Ejemplos:

1 π = 2 i k = 0 s 3 A ( k ) 267 53 k + 827 ( 300 3 ) k + 1 / 2 , j 3 A ( 3 + 267 6 ) = 300 3 {\displaystyle {\frac {1}{\pi }}=2\,{\boldsymbol {i}}\,\sum _{k=0}^{\infty }s_{3A}(k)\,{\frac {267\cdot 53k+827}{(-300^{3})^{k+1/2}}},\quad j_{3A}{\Big (}{\tfrac {3+{\sqrt {-267}}}{6}}{\Big )}=-300^{3}}
1 π = i k = 0 s 3 B ( k ) 12497 3000 89 ( k + 1 2 ) ( 27 U 89 2 ) k + 1 / 2 , j 3 B ( 3 + 267 6 ) = 27 ( 500 + 53 89 ) 2 = 27 U 89 2 {\displaystyle {\frac {1}{\pi }}={\boldsymbol {i}}\,\sum _{k=0}^{\infty }s_{3B}(k)\,{\frac {12497-3000{\sqrt {89}}\,(k+{\tfrac {1}{2}})}{(-27\,U_{89}^{2})^{k+1/2}}},\quad j_{3B}{\Big (}{\tfrac {3+{\sqrt {-267}}}{6}}{\Big )}=-27\,{\big (}500+53{\sqrt {89}}{\big )}^{2}=-27\,U_{89}^{2}}

Nivel 4

Sean

j 4 A ( τ ) = ( ( η ( τ ) η ( 4 τ ) ) 4 + 4 2 ( η ( 4 τ ) η ( τ ) ) 4 ) 2 = ( η 2 ( 2 τ ) η ( τ ) η ( 4 τ ) ) 24 = ( η ( ( 2 τ + 3 ) / 2 ) η ( 2 τ + 3 ) ) 24 = 1 q + 24 + 276 q + 2048 q 2 + 11202 q 3 + j 4 C ( τ ) = ( η ( τ ) η ( 4 τ ) ) 8 = 1 q 8 + 20 q 62 q 3 + 216 q 5 641 q 7 + {\displaystyle {\begin{aligned}j_{4A}(\tau )&={\Big (}{\big (}{\tfrac {\eta (\tau )}{\eta (4\tau )}}{\big )}^{4}+4^{2}{\big (}{\tfrac {\eta (4\tau )}{\eta (\tau )}}{\big )}^{4}{\Big )}^{2}={\Big (}{\tfrac {\eta ^{2}(2\tau )}{\eta (\tau )\,\eta (4\tau )}}{\Big )}^{24}=-{\Big (}{\tfrac {\eta ((2\tau +3)/2)}{\eta (2\tau +3)}}{\Big )}^{24}={\tfrac {1}{q}}+24+276q+2048q^{2}+11202q^{3}+\dots \\j_{4C}(\tau )&={\big (}{\tfrac {\eta (\tau )}{\eta (4\tau )}}{\big )}^{8}={\tfrac {1}{q}}-8+20q-62q^{3}+216q^{5}-641q^{7}+\dots \\\end{aligned}}}

donde el primero es la potencia 24 de la función modular de Weber f ( τ ) {\displaystyle {\mathfrak {f}}(\tau )} . Y además

s 4 A ( k ) = ( 2 k k ) 3 = 1 , 8 , 216 , 8000 , 343000 , {\displaystyle s_{4A}(k)={\tbinom {2k}{k}}^{3}=1,8,216,8000,343000,\dots } (sucesión A002897 en OEIS)
s 4 C ( k ) = j = 0 k ( 2 j j ) 3 ( k + j k j ) ( 16 ) k j = ( 1 ) k j = 0 k ( 2 j j ) 2 ( 2 k 2 j k j ) 2 = 1 , 8 , 88 , 1088 , 14296 , {\displaystyle s_{4C}(k)=\sum _{j=0}^{k}{\tbinom {2j}{j}}^{3}{\tbinom {k+j}{k-j}}(-16)^{k-j}=(-1)^{k}\sum _{j=0}^{k}{\tbinom {2j}{j}}^{2}{\tbinom {2k-2j}{k-j}}^{2}=1,-8,88,-1088,14296,\dots } (sucesión A036917 en OEIS)

Ejemplos:

1 π = 8 i k = 0 s 4 A ( k ) 6 k + 1 ( 2 9 ) k + 1 / 2 , j 4 A ( 1 + 4 2 ) = 2 9 {\displaystyle {\frac {1}{\pi }}=8\,{\boldsymbol {i}}\,\sum _{k=0}^{\infty }s_{4A}(k)\,{\frac {6k+1}{(-2^{9})^{k+1/2}}},\quad j_{4A}{\Big (}{\tfrac {1+{\sqrt {-4}}}{2}}{\Big )}=-2^{9}}
1 π = 16 i k = 0 s 4 C ( k ) 1 2 2 ( k + 1 2 ) ( 16 U 2 4 ) k + 1 / 2 , j 4 C ( 1 + 4 2 ) = 16 ( 1 + 2 ) 4 = 16 U 2 4 {\displaystyle {\frac {1}{\pi }}=16\,{\boldsymbol {i}}\,\sum _{k=0}^{\infty }s_{4C}(k)\,{\frac {1-2{\sqrt {2}}\,(k+{\tfrac {1}{2}})}{(-16\,U_{2}^{4})^{k+1/2}}},\quad j_{4C}{\Big (}{\tfrac {1+{\sqrt {-4}}}{2}}{\Big )}=-16\,{\big (}1+{\sqrt {2}}{\big )}^{4}=-16\,U_{2}^{4}}

Nivel 5

j 5 A ( τ ) = ( η ( τ ) η ( 5 τ ) ) 6 + 5 3 ( η ( 5 τ ) η ( τ ) ) 6 + 22 = 1 q + 16 + 134 q + 760 q 2 + 3345 q 3 + j 5 B ( τ ) = ( η ( τ ) η ( 5 τ ) ) 6 = 1 q 6 + 9 q + 10 q 2 30 q 3 + 6 q 4 + {\displaystyle {\begin{aligned}j_{5A}(\tau )&={\big (}{\tfrac {\eta (\tau )}{\eta (5\tau )}}{\big )}^{6}+5^{3}{\big (}{\tfrac {\eta (5\tau )}{\eta (\tau )}}{\big )}^{6}+22={\tfrac {1}{q}}+16+134q+760q^{2}+3345q^{3}+\dots \\j_{5B}(\tau )&={\big (}{\tfrac {\eta (\tau )}{\eta (5\tau )}}{\big )}^{6}={\tfrac {1}{q}}-6+9q+10q^{2}-30q^{3}+6q^{4}+\dots \end{aligned}}}

y,

s 5 A ( k ) = ( 2 k k ) j = 0 k ( k j ) 2 ( k + j j ) = 1 , 6 , 114 , 2940 , 87570 , {\displaystyle s_{5A}(k)={\tbinom {2k}{k}}\sum _{j=0}^{k}{\tbinom {k}{j}}^{2}{\tbinom {k+j}{j}}=1,6,114,2940,87570,\dots }
s 5 B ( k ) = j = 0 k ( 1 ) j + k ( k j ) 3 ( 4 k 5 j 3 k ) = 1 , 5 , 35 , 275 , 2275 , 19255 , {\displaystyle s_{5B}(k)=\sum _{j=0}^{k}(-1)^{j+k}{\tbinom {k}{j}}^{3}{\tbinom {4k-5j}{3k}}=1,-5,35,-275,2275,-19255,\dots } (sucesión A229111 en OEIS)

donde el primero es el producto de los coeficientes binomiales centrales y los números de Apéry (sucesión A005258 en OEIS)[9]

Ejemplos:

1 π = 5 9 i k = 0 s 5 A ( k ) 682 k + 71 ( 15228 ) k + 1 / 2 , j 5 A ( 5 + 5 ( 47 ) 10 ) = 15228 = ( 18 47 ) 2 {\displaystyle {\frac {1}{\pi }}={\frac {5}{9}}\,{\boldsymbol {i}}\,\sum _{k=0}^{\infty }s_{5A}(k)\,{\frac {682k+71}{(-15228)^{k+1/2}}},\quad j_{5A}{\Big (}{\tfrac {5+{\sqrt {-5(47)}}}{10}}{\Big )}=-15228=-(18{\sqrt {47}})^{2}}
1 π = 6 5 i k = 0 s 5 B ( k ) 25 5 141 ( k + 1 2 ) ( 5 5 U 5 15 ) k + 1 / 2 , j 5 B ( 5 + 5 ( 47 ) 10 ) = 5 5 ( 1 + 5 2 ) 15 = 5 5 U 5 15 {\displaystyle {\frac {1}{\pi }}={\frac {6}{\sqrt {5}}}\,{\boldsymbol {i}}\,\sum _{k=0}^{\infty }s_{5B}(k)\,{\frac {25{\sqrt {5}}-141(k+{\tfrac {1}{2}})}{(-5{\sqrt {5}}\,U_{5}^{15})^{k+1/2}}},\quad j_{5B}{\Big (}{\tfrac {5+{\sqrt {-5(47)}}}{10}}{\Big )}=-5{\sqrt {5}}\,{\big (}{\tfrac {1+{\sqrt {5}}}{2}}{\big )}^{15}=-5{\sqrt {5}}\,U_{5}^{15}}

Nivel 6

Funciones modulares

En 2002, Sato[7]​ estableció los primeros resultados para el nivel > 4. Involucró los números de Apéry que se usaron por primera vez para establecer la irracionalidad de ζ ( 3 ) {\displaystyle \zeta (3)} . Primero, defínase

j 6 A ( τ ) = j 6 B ( τ ) + 1 j 6 B ( τ ) 2 = j 6 C ( τ ) + 64 j 6 C ( τ ) + 16 = j 6 D ( τ ) + 81 j 6 D ( τ ) + 14 = 1 q + 10 + 79 q + 352 q 2 + {\displaystyle {\begin{aligned}j_{6A}(\tau )&=j_{6B}(\tau )+{\tfrac {1}{j_{6B}(\tau )}}-2=j_{6C}(\tau )+{\tfrac {64}{j_{6C}(\tau )}}+16=j_{6D}(\tau )+{\tfrac {81}{j_{6D}(\tau )}}+14={\tfrac {1}{q}}+10+79q+352q^{2}+\dots \end{aligned}}}
j 6 B ( τ ) = ( η ( 2 τ ) η ( 3 τ ) η ( τ ) η ( 6 τ ) ) 12 = 1 q + 12 + 78 q + 364 q 2 + 1365 q 3 + {\displaystyle {\begin{aligned}j_{6B}(\tau )&={\Big (}{\tfrac {\eta (2\tau )\eta (3\tau )}{\eta (\tau )\eta (6\tau )}}{\Big )}^{12}={\tfrac {1}{q}}+12+78q+364q^{2}+1365q^{3}+\dots \end{aligned}}}
j 6 C ( τ ) = ( η ( τ ) η ( 3 τ ) η ( 2 τ ) η ( 6 τ ) ) 6 = 1 q 6 + 15 q 32 q 2 + 87 q 3 192 q 4 + {\displaystyle {\begin{aligned}j_{6C}(\tau )&={\Big (}{\tfrac {\eta (\tau )\eta (3\tau )}{\eta (2\tau )\eta (6\tau )}}{\Big )}^{6}={\tfrac {1}{q}}-6+15q-32q^{2}+87q^{3}-192q^{4}+\dots \end{aligned}}}
j 6 D ( τ ) = ( η ( τ ) η ( 2 τ ) η ( 3 τ ) η ( 6 τ ) ) 4 = 1 q 4 2 q + 28 q 2 27 q 3 52 q 4 + {\displaystyle {\begin{aligned}j_{6D}(\tau )&={\Big (}{\tfrac {\eta (\tau )\eta (2\tau )}{\eta (3\tau )\eta (6\tau )}}{\Big )}^{4}={\tfrac {1}{q}}-4-2q+28q^{2}-27q^{3}-52q^{4}+\dots \end{aligned}}}
j 6 E ( τ ) = ( η ( 2 τ ) η 3 ( 3 τ ) η ( τ ) η 3 ( 6 τ ) ) 3 = 1 q + 3 + 6 q + 4 q 2 3 q 3 12 q 4 + {\displaystyle {\begin{aligned}j_{6E}(\tau )&={\Big (}{\tfrac {\eta (2\tau )\eta ^{3}(3\tau )}{\eta (\tau )\eta ^{3}(6\tau )}}{\Big )}^{3}={\tfrac {1}{q}}+3+6q+4q^{2}-3q^{3}-12q^{4}+\dots \end{aligned}}}

J. Conway y S. Norton demostraron que existen relaciones lineales entre la serie McKay-Thompson Tn,[14]​ una de las cuales era

T 6 A T 6 B T 6 C T 6 D + 2 T 6 E = 0 {\displaystyle T_{6A}-T_{6B}-T_{6C}-T_{6D}+2T_{6E}=0}

o usando los cocientes eta anteriores jn,

j 6 A j 6 B j 6 C j 6 D + 2 j 6 E = 22 {\displaystyle j_{6A}-j_{6B}-j_{6C}-j_{6D}+2j_{6E}=22}

Secuencias a

Para la función modular j6A, se puede asociar con tres secuencias diferentes (una situación similar ocurre para la función de nivel 10j10A). Sea

α 1 ( k ) = ( 2 k k ) j = 0 k ( k j ) 3 = 1 , 4 , 60 , 1120 , 24220 , {\displaystyle \alpha _{1}(k)={\tbinom {2k}{k}}\sum _{j=0}^{k}{\tbinom {k}{j}}^{3}=1,4,60,1120,24220,\dots } (sucesión A181418 en OEIS), etiquetada como s6 en el artículo de Cooper)
α 2 ( k ) = ( 2 k k ) j = 0 k ( k j ) m = 0 j ( j m ) 3 = ( 2 k k ) j = 0 k ( k j ) 2 ( 2 j j ) = 1 , 6 , 90 , 1860 , 44730 , {\displaystyle \alpha _{2}(k)={\tbinom {2k}{k}}\sum _{j=0}^{k}{\tbinom {k}{j}}\sum _{m=0}^{j}{\tbinom {j}{m}}^{3}={\tbinom {2k}{k}}\sum _{j=0}^{k}{\tbinom {k}{j}}^{2}{\tbinom {2j}{j}}=1,6,90,1860,44730,\dots } (sucesión A002896 en OEIS)
α 3 ( k ) = ( 2 k k ) j = 0 k ( k j ) ( 8 ) k j m = 0 j ( j m ) 3 = 1 , 12 , 252 , 6240 , 167580 , 4726512 , {\displaystyle \alpha _{3}(k)={\tbinom {2k}{k}}\sum _{j=0}^{k}{\tbinom {k}{j}}(-8)^{k-j}\sum _{m=0}^{j}{\tbinom {j}{m}}^{3}=1,-12,252,-6240,167580,-4726512,\dots }

Las tres secuencias involucran el producto de los coeficientes binomiales centrales. c ( k ) = ( 2 k k ) {\displaystyle c(k)={\tbinom {2k}{k}}} con: primero, los números de Franel j = 0 k ( k j ) 3 {\displaystyle \sum _{j=0}^{k}{\tbinom {k}{j}}^{3}}  ; 2°, (sucesión A002893 en OEIS), y 3º, (-1)^k (sucesión A093388 en OEIS). Téngase en cuenta que la segunda secuencia, a2(k) es también el número de polígonos de 2n pasos en una red cúbica. Sus complementos

α 2 ( k ) = ( 2 k k ) j = 0 k ( k j ) ( 1 ) k j m = 0 j ( j m ) 3 = 1 , 2 , 42 , 620 , 12250 , {\displaystyle \alpha '_{2}(k)={\tbinom {2k}{k}}\sum _{j=0}^{k}{\tbinom {k}{j}}(-1)^{k-j}\sum _{m=0}^{j}{\tbinom {j}{m}}^{3}=1,2,42,620,12250,\dots }
α 3 ( k ) = ( 2 k k ) j = 0 k ( k j ) ( 8 ) k j m = 0 j ( j m ) 3 = 1 , 20 , 636 , 23840 , 991900 , {\displaystyle \alpha '_{3}(k)={\tbinom {2k}{k}}\sum _{j=0}^{k}{\tbinom {k}{j}}(8)^{k-j}\sum _{m=0}^{j}{\tbinom {j}{m}}^{3}=1,20,636,23840,991900,\dots }

También hay secuencias asociadas, a saber, los números de Apéry,

s 6 B ( k ) = j = 0 k ( k j ) 2 ( k + j j ) 2 = 1 , 5 , 73 , 1445 , 33001 , {\displaystyle s_{6B}(k)=\sum _{j=0}^{k}{\tbinom {k}{j}}^{2}{\tbinom {k+j}{j}}^{2}=1,5,73,1445,33001,\dots } (sucesión A005259 en OEIS)

los números de Domb (sin signo) o el número de polígonos de 2n pasos en una retícula en diamante,

s 6 C ( k ) = ( 1 ) k j = 0 k ( k j ) 2 ( 2 ( k j ) k j ) ( 2 j j ) = 1 , 4 , 28 , 256 , 2716 , {\displaystyle s_{6C}(k)=(-1)^{k}\sum _{j=0}^{k}{\tbinom {k}{j}}^{2}{\tbinom {2(k-j)}{k-j}}{\tbinom {2j}{j}}=1,-4,28,-256,2716,\dots } (sucesión A002895 en OEIS)

y los números de Almkvist-Zudilin,

s 6 D ( k ) = j = 0 k ( 1 ) k j 3 k 3 j ( 3 j ) ! j ! 3 ( k 3 j ) ( k + j j ) = 1 , 3 , 9 , 3 , 279 , 2997 , {\displaystyle s_{6D}(k)=\sum _{j=0}^{k}(-1)^{k-j}\,3^{k-3j}\,{\tfrac {(3j)!}{j!^{3}}}{\tbinom {k}{3j}}{\tbinom {k+j}{j}}=1,-3,9,-3,-279,2997,\dots } (sucesión A125143 en OEIS)

donde ( 3 j ) ! j ! 3 = ( 2 j j ) ( 3 j j ) {\displaystyle {\tfrac {(3j)!}{j!^{3}}}={\tbinom {2j}{j}}{\tbinom {3j}{j}}} .

Identidades

Las funciones modulares pueden relacionarse como

P = k = 0 α 1 ( k ) 1 ( j 6 A ( τ ) ) k + 1 / 2 = k = 0 α 2 ( k ) 1 ( j 6 A ( τ ) + 4 ) k + 1 / 2 = k = 0 α 3 ( k ) 1 ( j 6 A ( τ ) 32 ) k + 1 / 2 {\displaystyle P=\sum _{k=0}^{\infty }\alpha _{1}(k)\,{\frac {1}{{\big (}j_{6A}(\tau ){\big )}^{k+1/2}}}=\sum _{k=0}^{\infty }\alpha _{2}(k)\,{\frac {1}{{\big (}j_{6A}(\tau )+4{\big )}^{k+1/2}}}=\sum _{k=0}^{\infty }\alpha _{3}(k)\,{\frac {1}{{\big (}j_{6A}(\tau )-32{\big )}^{k+1/2}}}}
Q = k = 0 s 6 B ( k ) 1 ( j 6 B ( τ ) ) k + 1 / 2 = k = 0 s 6 C ( k ) 1 ( j 6 C ( τ ) ) k + 1 / 2 = k = 0 s 6 D ( k ) 1 ( j 6 D ( τ ) ) k + 1 / 2 {\displaystyle Q=\sum _{k=0}^{\infty }s_{6B}(k)\,{\frac {1}{{\big (}j_{6B}(\tau ){\big )}^{k+1/2}}}=\sum _{k=0}^{\infty }s_{6C}(k)\,{\frac {1}{{\big (}j_{6C}(\tau ){\big )}^{k+1/2}}}=\sum _{k=0}^{\infty }s_{6D}(k)\,{\frac {1}{{\big (}j_{6D}(\tau ){\big )}^{k+1/2}}}}

si la serie converge y el signo se elige adecuadamente. También se puede observar que

P = Q = k = 0 α 2 ( k ) 1 ( j 6 A ( τ ) 4 ) k + 1 / 2 = k = 0 α 3 ( k ) 1 ( j 6 A ( τ ) + 32 ) k + 1 / 2 {\displaystyle P=Q=\sum _{k=0}^{\infty }\alpha '_{2}(k)\,{\frac {1}{{\big (}j_{6A}(\tau )-4{\big )}^{k+1/2}}}=\sum _{k=0}^{\infty }\alpha '_{3}(k)\,{\frac {1}{{\big (}j_{6A}(\tau )+32{\big )}^{k+1/2}}}}

lo que implica que

k = 0 α 2 ( k ) 1 ( j 6 A ( τ ) + 4 ) k + 1 / 2 = k = 0 α 2 ( k ) 1 ( j 6 A ( τ ) 4 ) k + 1 / 2 {\displaystyle \sum _{k=0}^{\infty }\alpha _{2}(k)\,{\frac {1}{{\big (}j_{6A}(\tau )+4{\big )}^{k+1/2}}}=\sum _{k=0}^{\infty }\alpha '_{2}(k)\,{\frac {1}{{\big (}j_{6A}(\tau )-4{\big )}^{k+1/2}}}}

y de manera similar usando a3 y a'3.

Ejemplos

Se puede usar un valor para j6A de tres maneras. Por ejemplo, comenzando con

Δ = j 6 A ( 17 6 ) = 198 2 4 = ( 140 2 ) 2 {\displaystyle \Delta =j_{6A}{\Big (}{\sqrt {\tfrac {-17}{6}}}{\Big )}=198^{2}-4=(140{\sqrt {2}})^{2}}

y observando que 3 × 17 = 51 {\displaystyle 3\times 17=51} , entonces

1 π = 24 3 35 k = 0 α 1 ( k ) 51 11 k + 53 ( Δ ) k + 1 / 2 1 π = 4 3 99 k = 0 α 2 ( k ) 17 560 k + 899 ( Δ + 4 ) k + 1 / 2 1 π = 3 2 k = 0 α 3 ( k ) 770 k + 73 ( Δ 32 ) k + 1 / 2 {\displaystyle {\begin{aligned}{\frac {1}{\pi }}&={\frac {24{\sqrt {3}}}{35}}\,\sum _{k=0}^{\infty }\alpha _{1}(k)\,{\frac {51\cdot 11k+53}{(\Delta )^{k+1/2}}}\\{\frac {1}{\pi }}&={\frac {4{\sqrt {3}}}{99}}\,\sum _{k=0}^{\infty }\alpha _{2}(k)\,{\frac {17\cdot 560k+899}{(\Delta +4)^{k+1/2}}}\\{\frac {1}{\pi }}&={\frac {\sqrt {3}}{2}}\,\sum _{k=0}^{\infty }\alpha _{3}(k)\,{\frac {770k+73}{(\Delta -32)^{k+1/2}}}\\\end{aligned}}}

tanto como

1 π = 12 3 9799 k = 0 α 2 ( k ) 11 51 560 k + 29693 ( Δ 4 ) k + 1 / 2 1 π = 6 3 613 k = 0 α 3 ( k ) 51 770 k + 3697 ( Δ + 32 ) k + 1 / 2 {\displaystyle {\begin{aligned}{\frac {1}{\pi }}&={\frac {12{\sqrt {3}}}{9799}}\,\sum _{k=0}^{\infty }\alpha '_{2}(k)\,{\frac {11\cdot 51\cdot 560k+29693}{(\Delta -4)^{k+1/2}}}\\{\frac {1}{\pi }}&={\frac {6{\sqrt {3}}}{613}}\,\sum _{k=0}^{\infty }\alpha '_{3}(k)\,{\frac {51\cdot 770k+3697}{(\Delta +32)^{k+1/2}}}\\\end{aligned}}}

aunque las fórmulas que usan los complementos aparentemente todavía no tienen una prueba rigurosa. Para las otras funciones modulares

1 π = 8 15 k = 0 s 6 B ( k ) ( 1 2 3 5 20 + k ) ( 1 ϕ 12 ) k + 1 / 2 , j 6 B ( 5 6 ) = ( 1 + 5 2 ) 12 = ϕ 12 {\displaystyle {\frac {1}{\pi }}=8{\sqrt {15}}\,\sum _{k=0}^{\infty }s_{6B}(k)\,{\Big (}{\tfrac {1}{2}}-{\tfrac {3{\sqrt {5}}}{20}}+k{\Big )}{\Big (}{\frac {1}{\phi ^{12}}}{\Big )}^{k+1/2},\quad j_{6B}{\Big (}{\sqrt {\tfrac {-5}{6}}}{\Big )}={\Big (}{\tfrac {1+{\sqrt {5}}}{2}}{\Big )}^{12}=\phi ^{12}}
1 π = 1 2 k = 0 s 6 C ( k ) 3 k + 1 32 k , j 6 C ( 1 3 ) = 32 {\displaystyle {\frac {1}{\pi }}={\frac {1}{2}}\,\sum _{k=0}^{\infty }s_{6C}(k)\,{\frac {3k+1}{32^{k}}},\quad j_{6C}{\Big (}{\sqrt {\tfrac {-1}{3}}}{\Big )}=32}
1 π = 2 3 k = 0 s 6 D ( k ) 4 k + 1 81 k + 1 / 2 , j 6 D ( 1 2 ) = 81 {\displaystyle {\frac {1}{\pi }}=2{\sqrt {3}}\,\sum _{k=0}^{\infty }s_{6D}(k)\,{\frac {4k+1}{81^{k+1/2}}},\quad j_{6D}{\Big (}{\sqrt {\tfrac {-1}{2}}}{\Big )}=81}

Nivel 7

Sea

s 7 A ( k ) = j = 0 k ( k j ) 2 ( 2 j k ) ( k + j j ) = 1 , 4 , 48 , 760 , 13840 , {\displaystyle s_{7A}(k)=\sum _{j=0}^{k}{\tbinom {k}{j}}^{2}{\tbinom {2j}{k}}{\tbinom {k+j}{j}}=1,4,48,760,13840,\dots } (sucesión A183204 en OEIS)

y

j 7 A ( τ ) = ( ( η ( τ ) η ( 7 τ ) ) 2 + 7 ( η ( 7 τ ) η ( τ ) ) 2 ) 2 = 1 q + 10 + 51 q + 204 q 2 + 681 q 3 + j 7 B ( τ ) = ( η ( τ ) η ( 7 τ ) ) 4 = 1 q 4 + 2 q + 8 q 2 5 q 3 4 q 4 10 q 5 + {\displaystyle {\begin{aligned}j_{7A}(\tau )&={\Big (}{\big (}{\tfrac {\eta (\tau )}{\eta (7\tau )}}{\big )}^{2}+7{\big (}{\tfrac {\eta (7\tau )}{\eta (\tau )}}{\big )}^{2}{\Big )}^{2}={\tfrac {1}{q}}+10+51q+204q^{2}+681q^{3}+\dots \\j_{7B}(\tau )&={\big (}{\tfrac {\eta (\tau )}{\eta (7\tau )}}{\big )}^{4}={\tfrac {1}{q}}-4+2q+8q^{2}-5q^{3}-4q^{4}-10q^{5}+\dots \end{aligned}}}

Ejemplo:

1 π = 7 22 3 k = 0 s 7 A ( k ) 11895 k + 1286 ( 22 3 ) k , j 7 A ( 7 + 427 14 ) = 22 3 + 1 = ( 39 7 ) 2 {\displaystyle {\frac {1}{\pi }}={\frac {\sqrt {7}}{22^{3}}}\,\sum _{k=0}^{\infty }s_{7A}(k)\,{\frac {11895k+1286}{(-22^{3})^{k}}},\quad j_{7A}{\Big (}{\tfrac {7+{\sqrt {-427}}}{14}}{\Big )}=-22^{3}+1=-(39{\sqrt {7}})^{2}}

Aún no se ha encontrado ninguna fórmula pi usando j7B.

Nivel 8

Sean

j 4 B ( τ ) = ( j 2 A ( 2 τ ) ) 1 / 2 = 1 q + 52 q + 834 q 3 + 4760 q 5 + 24703 q 7 + = ( ( η ( τ ) η 2 ( 4 τ ) η 2 ( 2 τ ) η ( 8 τ ) ) 4 + 4 ( η 2 ( 2 τ ) η ( 8 τ ) η ( τ ) η 2 ( 4 τ ) ) 4 ) 2 = ( ( η ( 2 τ ) η ( 4 τ ) η ( τ ) η ( 8 τ ) ) 4 4 ( η ( τ ) η ( 8 τ ) η ( 2 τ ) η ( 4 τ ) ) 4 ) 2 j 8 A ( τ ) = ( η ( τ ) η 2 ( 4 τ ) η 2 ( 2 τ ) η ( 8 τ ) ) 8 = 1 q 8 + 36 q 128 q 2 + 386 q 3 1024 q 4 + j 8 A ( τ ) = ( η ( 2 τ ) η ( 4 τ ) η ( τ ) η ( 8 τ ) ) 8 = 1 q + 8 + 36 q + 128 q 2 + 386 q 3 + 1024 q 4 + j 8 B ( τ ) = ( j 4 A ( 2 τ ) ) 1 / 2 = ( η 2 ( 4 τ ) η ( 2 τ ) η ( 8 τ ) ) 12 = 1 q + 12 q + 66 q 3 + 232 q 5 + 639 q 7 + {\displaystyle {\begin{aligned}j_{4B}(\tau )&={\big (}j_{2A}(2\tau ){\big )}^{1/2}={\tfrac {1}{q}}+52q+834q^{3}+4760q^{5}+24703q^{7}+\dots \\&={\Big (}{\big (}{\tfrac {\eta (\tau )\,\eta ^{2}(4\tau )}{\eta ^{2}(2\tau )\,\eta (8\tau )}}{\big )}^{4}+4{\big (}{\tfrac {\eta ^{2}(2\tau )\,\eta (8\tau )}{\eta (\tau )\,\eta ^{2}(4\tau )}}{\big )}^{4}{\Big )}^{2}={\Big (}{\big (}{\tfrac {\eta (2\tau )\,\eta (4\tau )}{\eta (\tau )\,\eta (8\tau )}}{\big )}^{4}-4{\big (}{\tfrac {\eta (\tau )\,\eta (8\tau )}{\eta (2\tau )\,\eta (4\tau )}}{\big )}^{4}{\Big )}^{2}\\j_{8A'}(\tau )&={\big (}{\tfrac {\eta (\tau )\,\eta ^{2}(4\tau )}{\eta ^{2}(2\tau )\,\eta (8\tau )}}{\big )}^{8}={\tfrac {1}{q}}-8+36q-128q^{2}+386q^{3}-1024q^{4}+\dots \\j_{8A}(\tau )&={\big (}{\tfrac {\eta (2\tau )\,\eta (4\tau )}{\eta (\tau )\,\eta (8\tau )}}{\big )}^{8}={\tfrac {1}{q}}+8+36q+128q^{2}+386q^{3}+1024q^{4}+\dots \\j_{8B}(\tau )&={\big (}j_{4A}(2\tau ){\big )}^{1/2}={\big (}{\tfrac {\eta ^{2}(4\tau )}{\eta (2\tau )\,\eta (8\tau )}}{\big )}^{12}={\tfrac {1}{q}}+12q+66q^{3}+232q^{5}+639q^{7}+\dots \end{aligned}}}

La expansión de la primera es la serie de McKay-Thompson de la clase 4B (y es la raíz cuadrada de otra función). La cuarta también es la raíz cuadrada de otra función. Sea

s 4 B ( k ) = ( 2 k k ) j = 0 k 4 k 2 j ( k 2 j ) ( 2 j j ) 2 = ( 2 k k ) j = 0 k ( k j ) ( 2 k 2 j k j ) ( 2 j j ) = 1 , 8 , 120 , 2240 , 47320 , {\displaystyle s_{4B}(k)={\tbinom {2k}{k}}\sum _{j=0}^{k}4^{k-2j}{\tbinom {k}{2j}}{\tbinom {2j}{j}}^{2}={\tbinom {2k}{k}}\sum _{j=0}^{k}{\tbinom {k}{j}}{\tbinom {2k-2j}{k-j}}{\tbinom {2j}{j}}=1,8,120,2240,47320,\dots }
s 8 A ( k ) = ( 1 ) k j = 0 k ( k j ) 2 ( 2 j k ) 2 = 1 , 4 , 40 , 544 , 8536 , {\displaystyle s_{8A'}(k)=(-1)^{k}\sum _{j=0}^{k}{\tbinom {k}{j}}^{2}{\tbinom {2j}{k}}^{2}=1,-4,40,-544,8536,\dots }
s 8 B ( k ) = j = 0 k ( 2 j j ) 3 ( 2 k 4 j k 2 j ) = 1 , 2 , 14 , 36 , 334 , {\displaystyle s_{8B}(k)=\sum _{j=0}^{k}{\tbinom {2j}{j}}^{3}{\tbinom {2k-4j}{k-2j}}=1,2,14,36,334,\dots }

donde el primero es el producto[2]​ del coeficiente binomial central y una secuencia relacionada con una media aritmético-geométrica (sucesión A081085 en OEIS),

Ejemplos:

1 π = 2 2 13 k = 0 s 4 B ( k ) 70 99 k + 579 ( 16 + 396 2 ) k + 1 / 2 , j 4 B ( 1 4 58 ) = 396 2 {\displaystyle {\frac {1}{\pi }}={\frac {2{\sqrt {2}}}{13}}\,\sum _{k=0}^{\infty }s_{4B}(k)\,{\frac {70\cdot 99\,k+579}{(16+396^{2})^{k+1/2}}},\qquad j_{4B}{\Big (}{\tfrac {1}{4}}{\sqrt {-58}}{\Big )}=396^{2}}
1 π = 2 70 k = 0 s 4 B ( k ) 58 13 99 k + 6243 ( 16 396 2 ) k + 1 / 2 {\displaystyle {\frac {1}{\pi }}={\frac {\sqrt {-2}}{70}}\,\sum _{k=0}^{\infty }s_{4B}(k)\,{\frac {58\cdot 13\cdot 99\,k+6243}{(16-396^{2})^{k+1/2}}}}
1 π = 2 2 k = 0 s 8 A ( k ) 222 + 377 2 ( k + 1 2 ) ( 4 ( 1 + 2 ) 12 ) k + 1 / 2 , j 8 A ( 1 4 58 ) = 4 ( 1 + 2 ) 12 , j 8 A ( 1 4 58 ) = 4 ( 99 + 13 58 ) 2 = 4 U 58 2 {\displaystyle {\frac {1}{\pi }}=2{\sqrt {2}}\,\sum _{k=0}^{\infty }s_{8A'}(k)\,{\frac {-222+377{\sqrt {2}}\,(k+{\tfrac {1}{2}})}{{\big (}4(1+{\sqrt {2}})^{12}{\big )}^{k+1/2}}},\qquad j_{8A'}{\Big (}{\tfrac {1}{4}}{\sqrt {-58}}{\Big )}=4(1+{\sqrt {2}})^{12},\quad j_{8A}{\Big (}{\tfrac {1}{4}}{\sqrt {-58}}{\Big )}=4(99+13{\sqrt {58}})^{2}=4U_{58}^{2}}
1 π = 3 / 5 16 k = 0 s 8 B ( k ) 210 k + 43 ( 64 ) k + 1 / 2 , j 4 B ( 1 4 7 ) = 64 {\displaystyle {\frac {1}{\pi }}={\frac {\sqrt {3/5}}{16}}\,\sum _{k=0}^{\infty }s_{8B}(k)\,{\frac {210k+43}{(64)^{k+1/2}}},\qquad j_{4B}{\Big (}{\tfrac {1}{4}}{\sqrt {-7}}{\Big )}=64}

aunque todavía no se conoce la fórmula pi usando j8A(t).

Nivel 9

Sea

j 3 C ( τ ) = ( j ( 3 τ ) ) 1 / 3 = 6 + ( η 2 ( 3 τ ) η ( τ ) η ( 9 τ ) ) 6 27 ( η ( τ ) η ( 9 τ ) η 2 ( 3 τ ) ) 6 = 1 q + 248 q 2 + 4124 q 5 + 34752 q 8 + j 9 A ( τ ) = ( η 2 ( 3 τ ) η ( τ ) η ( 9 τ ) ) 6 = 1 q + 6 + 27 q + 86 q 2 + 243 q 3 + 594 q 4 + {\displaystyle {\begin{aligned}j_{3C}(\tau )&={\big (}j(3\tau ))^{1/3}=-6+{\big (}{\tfrac {\eta ^{2}(3\tau )}{\eta (\tau )\,\eta (9\tau )}}{\big )}^{6}-27{\big (}{\tfrac {\eta (\tau )\,\eta (9\tau )}{\eta ^{2}(3\tau )}}{\big )}^{6}={\tfrac {1}{q}}+248q^{2}+4124q^{5}+34752q^{8}+\dots \\j_{9A}(\tau )&={\big (}{\tfrac {\eta ^{2}(3\tau )}{\eta (\tau )\,\eta (9\tau )}}{\big )}^{6}={\tfrac {1}{q}}+6+27q+86q^{2}+243q^{3}+594q^{4}+\dots \\\end{aligned}}}

La expansión de la primera es la serie de McKay- Thompson de la clase 3C (relacionada con la raíz cúbica de la función j), mientras que la segunda es la de la clase 9A. Sea

s 3 C ( k ) = ( 2 k k ) j = 0 k ( 3 ) k 3 j ( k j ) ( k j j ) ( k 2 j j ) = ( 2 k k ) j = 0 k ( 3 ) k 3 j ( k 3 j ) ( 2 j j ) ( 3 j j ) = 1 , 6 , 54 , 420 , 630 , {\displaystyle s_{3C}(k)={\tbinom {2k}{k}}\sum _{j=0}^{k}(-3)^{k-3j}{\tbinom {k}{j}}{\tbinom {k-j}{j}}{\tbinom {k-2j}{j}}={\tbinom {2k}{k}}\sum _{j=0}^{k}(-3)^{k-3j}{\tbinom {k}{3j}}{\tbinom {2j}{j}}{\tbinom {3j}{j}}=1,-6,54,-420,630,\dots }
s 9 A ( k ) = j = 0 k ( k j ) 2 m = 0 j ( k m ) ( j m ) ( j + m k ) = 1 , 3 , 27 , 309 , 4059 , {\displaystyle s_{9A}(k)=\sum _{j=0}^{k}{\tbinom {k}{j}}^{2}\sum _{m=0}^{j}{\tbinom {k}{m}}{\tbinom {j}{m}}{\tbinom {j+m}{k}}=1,3,27,309,4059,\dots }

donde el primero es el producto de los coeficientes binomiales centrales y (sucesión A006077 en OEIS) (aunque con diferentes signos).

Ejemplos:

1 π = i 9 k = 0 s 3 C ( k ) 602 k + 85 ( 960 12 ) k + 1 / 2 , j 3 C ( 3 + 43 6 ) = 960 {\displaystyle {\frac {1}{\pi }}={\frac {-{\boldsymbol {i}}}{9}}\sum _{k=0}^{\infty }s_{3C}(k)\,{\frac {602k+85}{(-960-12)^{k+1/2}}},\quad j_{3C}{\Big (}{\tfrac {3+{\sqrt {-43}}}{6}}{\Big )}=-960}
1 π = 6 i k = 0 s 9 A ( k ) 4 129 ( k + 1 2 ) ( 3 3 U 129 ) k + 1 / 2 , j 9 A ( 3 + 43 6 ) = 3 3 ( 53 3 + 14 43 ) = 3 3 U 129 {\displaystyle {\frac {1}{\pi }}=6\,{\boldsymbol {i}}\,\sum _{k=0}^{\infty }s_{9A}(k)\,{\frac {4-{\sqrt {129}}\,(k+{\tfrac {1}{2}})}{{\big (}-3{\sqrt {3U_{129}}}{\big )}^{k+1/2}}},\quad j_{9A}{\Big (}{\tfrac {3+{\sqrt {-43}}}{6}}{\Big )}=-3{\sqrt {3}}{\big (}53{\sqrt {3}}+14{\sqrt {43}}{\big )}=-3{\sqrt {3U_{129}}}}

Nivel 10

Funciones modulares

Sea

j 10 A ( τ ) = j 10 B ( τ ) + 16 j 10 B ( τ ) + 8 = j 10 C ( τ ) + 25 j 10 C ( τ ) + 6 = j 10 D ( τ ) + 1 j 10 D ( τ ) 2 = 1 q + 4 + 22 q + 56 q 2 + {\displaystyle {\begin{aligned}j_{10A}(\tau )&=j_{10B}(\tau )+{\tfrac {16}{j_{10B}(\tau )}}+8=j_{10C}(\tau )+{\tfrac {25}{j_{10C}(\tau )}}+6=j_{10D}(\tau )+{\tfrac {1}{j_{10D}(\tau )}}-2={\tfrac {1}{q}}+4+22q+56q^{2}+\dots \end{aligned}}}
j 10 B ( τ ) = ( η ( τ ) η ( 5 τ ) η ( 2 τ ) η ( 10 τ ) ) 4 = 1 q 4 + 6 q 8 q 2 + 17 q 3 32 q 4 + {\displaystyle {\begin{aligned}j_{10B}(\tau )&={\Big (}{\tfrac {\eta (\tau )\eta (5\tau )}{\eta (2\tau )\eta (10\tau )}}{\Big )}^{4}={\tfrac {1}{q}}-4+6q-8q^{2}+17q^{3}-32q^{4}+\dots \end{aligned}}}
j 10 C ( τ ) = ( η ( τ ) η ( 2 τ ) η ( 5 τ ) η ( 10 τ ) ) 2 = 1 q 2 3 q + 6 q 2 + 2 q 3 + 2 q 4 + {\displaystyle {\begin{aligned}j_{10C}(\tau )&={\Big (}{\tfrac {\eta (\tau )\eta (2\tau )}{\eta (5\tau )\eta (10\tau )}}{\Big )}^{2}={\tfrac {1}{q}}-2-3q+6q^{2}+2q^{3}+2q^{4}+\dots \end{aligned}}}
j 10 D ( τ ) = ( η ( 2 τ ) η ( 5 τ ) η ( τ ) η ( 10 τ ) ) 6 = 1 q + 6 + 21 q + 62 q 2 + 162 q 3 + {\displaystyle {\begin{aligned}j_{10D}(\tau )&={\Big (}{\tfrac {\eta (2\tau )\eta (5\tau )}{\eta (\tau )\eta (10\tau )}}{\Big )}^{6}={\tfrac {1}{q}}+6+21q+62q^{2}+162q^{3}+\dots \end{aligned}}}
j 10 E ( τ ) = ( η ( 2 τ ) η 5 ( 5 τ ) η ( τ ) η 5 ( 10 τ ) ) = 1 q + 1 + q + 2 q 2 + 2 q 3 2 q 4 + {\displaystyle {\begin{aligned}j_{10E}(\tau )&={\Big (}{\tfrac {\eta (2\tau )\eta ^{5}(5\tau )}{\eta (\tau )\eta ^{5}(10\tau )}}{\Big )}={\tfrac {1}{q}}+1+q+2q^{2}+2q^{3}-2q^{4}+\dots \end{aligned}}}

Al igual que el nivel 6, también existen relaciones lineales, como

T 10 A T 10 B T 10 C T 10 D + 2 T 10 E = 0 {\displaystyle T_{10A}-T_{10B}-T_{10C}-T_{10D}+2T_{10E}=0}

o usando los cocientes eta anteriores jn,

j 10 A j 10 B j 10 C j 10 D + 2 j 10 E = 6 {\displaystyle j_{10A}-j_{10B}-j_{10C}-j_{10D}+2j_{10E}=6}

Secuencias ß

Sea

β 1 ( k ) = j = 0 k ( k j ) 4 = 1 , 2 , 18 , 164 , 1810 , {\displaystyle \beta _{1}(k)=\sum _{j=0}^{k}{\tbinom {k}{j}}^{4}=1,2,18,164,1810,\dots } (sucesión A005260 en OEIS), etiquetado como s10 en el artículo de Cooper)
β 2 ( k ) = ( 2 k k ) j = 0 k ( 2 j j ) 1 ( k j ) m = 0 j ( j m ) 4 = 1 , 4 , 36 , 424 , 5716 , {\displaystyle \beta _{2}(k)={\tbinom {2k}{k}}\sum _{j=0}^{k}{\tbinom {2j}{j}}^{-1}{\tbinom {k}{j}}\sum _{m=0}^{j}{\tbinom {j}{m}}^{4}=1,4,36,424,5716,\dots }
β 3 ( k ) = ( 2 k k ) j = 0 k ( 2 j j ) 1 ( k j ) ( 4 ) k j m = 0 j ( j m ) 4 = 1 , 6 , 66 , 876 , 12786 , {\displaystyle \beta _{3}(k)={\tbinom {2k}{k}}\sum _{j=0}^{k}{\tbinom {2j}{j}}^{-1}{\tbinom {k}{j}}(-4)^{k-j}\sum _{m=0}^{j}{\tbinom {j}{m}}^{4}=1,-6,66,-876,12786,\dots }

sus complementos

β 2 ( k ) = ( 2 k k ) j = 0 k ( 2 j j ) 1 ( k j ) ( 1 ) k j m = 0 j ( j m ) 4 = 1 , 0 , 12 , 24 , 564 , 2784 , {\displaystyle \beta _{2}'(k)={\tbinom {2k}{k}}\sum _{j=0}^{k}{\tbinom {2j}{j}}^{-1}{\tbinom {k}{j}}(-1)^{k-j}\sum _{m=0}^{j}{\tbinom {j}{m}}^{4}=1,0,12,24,564,2784,\dots }
β 3 ( k ) = ( 2 k k ) j = 0 k ( 2 j j ) 1 ( k j ) ( 4 ) k j m = 0 j ( j m ) 4 = 1 , 10 , 162 , 3124 , 66994 , {\displaystyle \beta _{3}'(k)={\tbinom {2k}{k}}\sum _{j=0}^{k}{\tbinom {2j}{j}}^{-1}{\tbinom {k}{j}}(4)^{k-j}\sum _{m=0}^{j}{\tbinom {j}{m}}^{4}=1,10,162,3124,66994,\dots }

y,

s 10 B ( k ) = 1 , 2 , 10 , 68 , 514 , 4100 , 33940 , {\displaystyle s_{10B}(k)=1,-2,10,-68,514,-4100,33940,\dots }
s 10 C ( k ) = 1 , 1 , 1 , 1 , 1 , 23 , 263 , 1343 , 2303 , {\displaystyle s_{10C}(k)=1,-1,1,-1,1,23,-263,1343,-2303,\dots }
s 10 D ( k ) = 1 , 3 , 25 , 267 , 3249 , 42795 , 594145 , {\displaystyle s_{10D}(k)=1,3,25,267,3249,42795,594145,\dots }

aunque aún no se conocen formas cerradas para las últimas tres secuencias.

Identidades

Las funciones modulares se pueden relacionar como[15]

U = k = 0 β 1 ( k ) 1 ( j 10 A ( τ ) ) k + 1 / 2 = k = 0 β 2 ( k ) 1 ( j 10 A ( τ ) + 4 ) k + 1 / 2 = k = 0 β 3 ( k ) 1 ( j 10 A ( τ ) 16 ) k + 1 / 2 {\displaystyle U=\sum _{k=0}^{\infty }\beta _{1}(k)\,{\frac {1}{(j_{10A}(\tau ))^{k+1/2}}}=\sum _{k=0}^{\infty }\beta _{2}(k)\,{\frac {1}{(j_{10A}(\tau )+4)^{k+1/2}}}=\sum _{k=0}^{\infty }\beta _{3}(k)\,{\frac {1}{(j_{10A}(\tau )-16)^{k+1/2}}}}
V = k = 0 s 10 B ( k ) 1 ( j 10 B ( τ ) ) k + 1 / 2 = k = 0 s 10 C ( k ) 1 ( j 10 C ( τ ) ) k + 1 / 2 = k = 0 s 10 D ( k ) 1 ( j 10 D ( τ ) ) k + 1 / 2 {\displaystyle V=\sum _{k=0}^{\infty }s_{10B}(k)\,{\frac {1}{(j_{10B}(\tau ))^{k+1/2}}}=\sum _{k=0}^{\infty }s_{10C}(k)\,{\frac {1}{(j_{10C}(\tau ))^{k+1/2}}}=\sum _{k=0}^{\infty }s_{10D}(k)\,{\frac {1}{(j_{10D}(\tau ))^{k+1/2}}}}

si la serie converge. De hecho, también se puede observar que

U = V = k = 0 β 2 ( k ) 1 ( j 10 A ( τ ) 4 ) k + 1 / 2 = k = 0 β 3 ( k ) 1 ( j 10 A ( τ ) + 16 ) k + 1 / 2 {\displaystyle U=V=\sum _{k=0}^{\infty }\beta _{2}'(k)\,{\frac {1}{(j_{10A}(\tau )-4)^{k+1/2}}}=\sum _{k=0}^{\infty }\beta _{3}'(k)\,{\frac {1}{(j_{10A}(\tau )+16)^{k+1/2}}}}

Dado que el exponente tiene una parte fraccional, el signo de la raíz cuadrada debe elegirse adecuadamente, aunque es un problema más sencillo cuando jn es positivo.

Ejemplos

Al igual que el nivel 6, la función de nivel 10 j10A se puede utilizar de tres maneras. Empezando con

j 10 A ( 19 10 ) = 76 2 {\displaystyle j_{10A}{\Big (}{\sqrt {\tfrac {-19}{10}}}{\Big )}=76^{2}}

y observando que 5 × 19 = 95 {\displaystyle 5\times 19=95} , entonces

1 π = 5 95 k = 0 β 1 ( k ) 408 k + 47 ( 76 2 ) k + 1 / 2 1 π = 1 17 95 k = 0 β 2 ( k ) 19 1824 k + 3983 ( 76 2 + 4 ) k + 1 / 2 1 π = 1 6 95 k = 0 β 3 ( k ) 19 646 k + 1427 ( 76 2 16 ) k + 1 / 2 {\displaystyle {\begin{aligned}{\frac {1}{\pi }}&={\frac {5}{\sqrt {95}}}\,\sum _{k=0}^{\infty }\beta _{1}(k)\,{\frac {408k+47}{(76^{2})^{k+1/2}}}\\{\frac {1}{\pi }}&={\frac {1}{17{\sqrt {95}}}}\,\sum _{k=0}^{\infty }\beta _{2}(k)\,{\frac {19\cdot 1824k+3983}{(76^{2}+4)^{k+1/2}}}\\{\frac {1}{\pi }}&={\frac {1}{6{\sqrt {95}}}}\,\,\sum _{k=0}^{\infty }\beta _{3}(k)\,\,{\frac {19\cdot 646k+1427}{(76^{2}-16)^{k+1/2}}}\\\end{aligned}}}

tanto como

1 π = 5 481 95 k = 0 β 2 ( k ) 19 10336 k + 22675 ( 76 2 4 ) k + 1 / 2 1 π = 5 181 95 k = 0 β 3 ( k ) 19 3876 k + 8405 ( 76 2 + 16 ) k + 1 / 2 {\displaystyle {\begin{aligned}{\frac {1}{\pi }}&={\frac {5}{481{\sqrt {95}}}}\,\sum _{k=0}^{\infty }\beta _{2}'(k)\,{\frac {19\cdot 10336k+22675}{(76^{2}-4)^{k+1/2}}}\\{\frac {1}{\pi }}&={\frac {5}{181{\sqrt {95}}}}\,\sum _{k=0}^{\infty }\beta _{3}'(k)\,{\frac {19\cdot 3876k+8405}{(76^{2}+16)^{k+1/2}}}\end{aligned}}}

aunque los que usan los complementos aún no tienen una prueba rigurosa. Una fórmula conjeturada que usa una de las últimas tres secuencias, es

1 π = i 5 k = 0 s 10 C ( k ) 10 k + 3 ( 5 2 ) k + 1 / 2 , j 10 C ( 1 + i 2 ) = 5 2 {\displaystyle {\frac {1}{\pi }}={\frac {\boldsymbol {i}}{\sqrt {5}}}\,\sum _{k=0}^{\infty }s_{10C}(k){\frac {10k+3}{(-5^{2})^{k+1/2}}},\quad j_{10C}{\Big (}{\tfrac {1+\,{\boldsymbol {i}}}{2}}{\Big )}=-5^{2}}

lo que implica que podría haber ejemplos para todas las secuencias de nivel 10.

Nivel 11

Sea la serie de McKay-Thompson de la clase 11A

j 11 A ( τ ) = ( 1 + 3 F ) 3 + ( 1 F + 3 F ) 2 = 1 q + 6 + 17 q + 46 q 2 + 116 q 3 + {\displaystyle j_{11A}(\tau )=(1+3F)^{3}+({\tfrac {1}{\sqrt {F}}}+3{\sqrt {F}})^{2}={\tfrac {1}{q}}+6+17q+46q^{2}+116q^{3}+\dots }

donde

F = η ( 3 τ ) η ( 33 τ ) η ( τ ) η ( 11 τ ) {\displaystyle F={\tfrac {\eta (3\tau )\,\eta (33\tau )}{\eta (\tau )\,\eta (11\tau )}}}

y

s 11 A ( k ) = 1 , 4 , 28 , 268 , 3004 , 36784 , 476476 , {\displaystyle s_{11A}(k)=1,\,4,\,28,\,268,\,3004,\,36784,\,476476,\dots }

Aún no se conoce una forma cerrada en términos de coeficientes binomiales para la secuencia, pero obedece a la relación de recurrencia

( k + 1 ) 3 s k + 1 = 2 ( 2 k + 1 ) ( 5 k 2 + 5 k + 2 ) s k 8 k ( 7 k 2 + 1 ) s k 1 + 22 k ( k 1 ) ( 2 k 1 ) s k 2 {\displaystyle (k+1)^{3}s_{k+1}=2(2k+1)(5k^{2}+5k+2)s_{k}\,-\,8k(7k^{2}+1)s_{k-1}\,+\,22k(k-1)(2k-1)s_{k-2}}

con condiciones iniciales s(0) = 1, s(1) = 4.

Ejemplo:[16]

1 π = i 22 k = 0 s 11 A ( k ) 221 k + 67 ( 44 ) k + 1 / 2 , j 11 A ( 1 + 17 / 11 2 ) = 44 {\displaystyle {\frac {1}{\pi }}={\frac {\boldsymbol {i}}{22}}\sum _{k=0}^{\infty }s_{11A}(k)\,{\frac {221k+67}{(-44)^{k+1/2}}},\quad j_{11A}{\Big (}{\tfrac {1+{\sqrt {-17/11}}}{2}}{\Big )}=-44}

Niveles más altos

Como señaló Cooper,[16]​ hay secuencias análogas para ciertos niveles superiores.

Series similares

R. Steiner encontró ejemplos usando los números de Catalan C k {\displaystyle C_{k}}

1 π = k = 0 ( 2 C k n ) 2 ( 4 z ) k + ( 2 4 ( n 2 ) + 2 ( 4 n 3 ) z ) 2 4 k ( z Z , n 2 , n N ) {\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }{(2C_{k-n})}^{2}{\frac {(4z)k+(2^{4(n-2)+2}-(4n-3)z)}{2^{4k}}}\quad (z\in \mathbb {Z} ,n\geq 2,n\in \mathbb {N} )}

para los que existe una forma modular con un segundo periódico para k k = 1 16 ( ( 20 12 i ) + 16 n ) , k = 1 16 ( ( 20 + 12 i ) + 16 n ) {\displaystyle k={\frac {1}{16}}((-20-12{\boldsymbol {i}})+16n),k={\frac {1}{16}}((-20+12{\boldsymbol {i}})+16n)} Otras series similares son

1 π = k = 0 ( 2 C k 2 ) 2 3 k + 1 4 2 4 k {\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }{(2C_{k-2})}^{2}{\frac {3k+{\frac {1}{4}}}{2^{4k}}}}
1 π = k = 0 ( 2 C k 1 ) 2 ( 4 z + 1 ) k z 2 4 k ( z Z ) {\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }{(2C_{k-1})}^{2}{\frac {(4z+1)k-z}{2^{4k}}}(z\in \mathbb {Z} )}
1 π = k = 0 ( 2 C k 1 ) 2 1 k + 1 2 2 4 k {\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }{(2C_{k-1})}^{2}{\frac {-1k+{\frac {1}{2}}}{2^{4k}}}}
1 π = k = 0 ( 2 C k 1 ) 2 0 k + 1 4 2 4 k {\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }{(2C_{k-1})}^{2}{\frac {0k+{\frac {1}{4}}}{2^{4k}}}}
1 π = k = 0 ( 2 C k 1 ) 2 k 5 + 1 5 2 4 k {\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }{(2C_{k-1})}^{2}{\frac {{\frac {k}{5}}+{\frac {1}{5}}}{2^{4k}}}}
1 π = k = 0 ( 2 C k 1 ) 2 k 3 + 1 6 2 4 k {\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }{(2C_{k-1})}^{2}{\frac {{\frac {k}{3}}+{\frac {1}{6}}}{2^{4k}}}}
1 π = k = 0 ( 2 C k 1 ) 2 k 2 + 1 8 2 4 k {\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }{(2C_{k-1})}^{2}{\frac {{\frac {k}{2}}+{\frac {1}{8}}}{2^{4k}}}}
1 π = k = 0 ( 2 C k 1 ) 2 2 k 1 4 2 4 k {\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }{(2C_{k-1})}^{2}{\frac {2k-{\frac {1}{4}}}{2^{4k}}}}
1 π = k = 0 ( 2 C k 1 ) 2 3 k 1 2 2 4 k {\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }{(2C_{k-1})}^{2}{\frac {3k-{\frac {1}{2}}}{2^{4k}}}}
1 π = k = 0 ( 2 C k ) 2 k 16 + 1 16 2 4 k {\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }{(2C_{k})}^{2}{\frac {{\frac {k}{16}}+{\frac {1}{16}}}{2^{4k}}}}

con el último (comentarios en (sucesión A013709 en OEIS) encontrado mediante el uso de una combinación lineal de partes superiores de las series de Wallis-Lambert para 4/Pi y de Euler para el perímetro de una elipse.

Usando la definición de los números Catalan con la función gamma, el primero y el último, por ejemplo, dan las identidades

1 4 = k = 0 ( Γ ( 1 2 + k ) Γ ( 2 + k ) ) 2 ( 4 z k ( 4 n 3 ) z + 2 4 ( n 2 ) + 2 ) ( z Z , n 2 , n N ) {\displaystyle {\frac {1}{4}}=\sum _{k=0}^{\infty }{\left({\frac {\Gamma ({\frac {1}{2}}+k)}{\Gamma (2+k)}}\right)}^{2}\left(4zk-(4n-3)z+2^{4(n-2)+2}\right)\quad (z\in \mathbb {Z} ,n\geq 2,n\in \mathbb {N} )}
4 = k = 0 ( Γ ( 1 2 + k ) Γ ( 2 + k ) ) 2 ( k + 1 ) {\displaystyle 4=\sum _{k=0}^{\infty }{\left({\frac {\Gamma ({\frac {1}{2}}+k)}{\Gamma (2+k)}}\right)}^{2}(k+1)} .

El último también es equivalente a

1 π = 1 4 k = 0 ( 2 k k ) 2 k + 1 1 2 4 k {\displaystyle {\frac {1}{\pi }}={\frac {1}{4}}\sum _{k=0}^{\infty }{\frac {{\binom {2k}{k}}^{2}}{k+1}}\,{\frac {1}{2^{4k}}}}

y está relacionado con el hecho de que

π = lim k 2 4 k k ( 2 k k ) 2 {\displaystyle \pi =\lim _{k\rightarrow \infty }{\frac {2^{4k}}{k{2k \choose k}^{2}}}}

que es consecuencia de la aproximación de Stirling.

Véase también

Referencias

  1. a b Chan, Heng Huat; Chan, Song Heng; Liu, Zhiguo (2004). «Domb's numbers and Ramanujan–Sato type series for 1/p». Advances in Mathematics 186 (2): 396-410. doi:10.1016/j.aim.2003.07.012. 
  2. a b c Almkvist, Gert; Guillera, Jesus (2013). «Ramanujan–Sato-Like Series». En Borwein, J.; Shparlinski, I.; Zudilin, eds. Number Theory and Related Fields. Springer Proceedings in Mathematics & Statistics. vol 43. New York: Springer. pp. 55-74. ISBN 978-1-4614-6641-3. doi:10.1007/978-1-4614-6642-0_2. 
  3. a b c Chan, H. H.; Cooper, S. (2012). «Rational analogues of Ramanujan's series for 1/p». Mathematical Proceedings of the Cambridge Philosophical Society 153 (2): 361-383. doi:10.1017/S0305004112000254. 
  4. Almkvist, G. (2012). Some conjectured formulas for 1/p coming from polytopes, K3-surfaces and Moonshine. arXiv:1211.6563. 
  5. Ramanujan, S. (1914). «Modular equations and approximations to p». Quart. J. Math. (Oxford) 45. 
  6. Chan; Tanigawa; Yang; Zudilin (2011). «New analogues of Clausen's identities arising from the theory of modular forms». Advances in Mathematics 228 (2): 1294-1314. doi:10.1016/j.aim.2011.06.011. 
  7. a b Sato, T. (2002). «Apéry numbers and Ramanujan's series for 1/p». Abstract of a Talk Presented at the Annual Meeting of the Mathematical Society of Japan. 
  8. Chan, H.; Verrill, H. (2009). «The Apéry numbers, the Almkvist–Zudilin Numbers, and new series for 1/p». Mathematical Research Letters 16 (3): 405-420. doi:10.4310/MRL.2009.v16.n3.a3. 
  9. a b Cooper, S. (2012). «Sporadic sequences, modular forms and new series for 1/p». Ramanujan Journal 29 (1–3): 163-183. doi:10.1007/s11139-011-9357-3. 
  10. a b Zagier, D. (2000). Traces of Singular Moduli. pp. 15-16. 
  11. Chudnovsky, David V.; Chudnovsky, Gregory V. (1989), «The Computation of Classical Constants», Proceedings of the National Academy of Sciences of the United States of America 86 (21): 8178-8182, ISSN 0027-8424, PMC 298242, PMID 16594075, doi:10.1073/pnas.86.21.8178 ..
  12. Yee, Alexander; Kondo, Shigeru (2011), 10 Trillion Digits of Pi: A Case Study of summing Hypergeometric Series to high precision on Multicore Systems, Technical Report, Computer Science Department, University of Illinois ..
  13. Borwein, J. M.; Borwein, P. B.; Bailey, D. H. (1989). «Ramanujan, modular equations, and approximations to pi; Or how to compute one billion digits of pi». Amer. Math. Monthly 96 (3): 201-219. doi:10.1080/00029890.1989.11972169. 
  14. Conway, J.; Norton, S. (1979). «Monstrous Moonshine». Bulletin of the London Mathematical Society 11 (3): 308–339 [p. 319]. doi:10.1112/blms/11.3.308. 
  15. S. Cooper, "Level 10 analogues of Ramanujan’s series for 1/p", Theorem 4.3, p.85, J. Ramanujan Math. Soc. 27, No.1 (2012)
  16. a b Cooper, S. (December 2013). «Ramanujan's theories of elliptic functions to alternative bases, and beyond». Askey 80 Conference. 

Enlaces externos

  • Números de Franel
  • Serie de McKay-Thompson
  • Aproximaciones a Pi a través de la función eta de Dedekind
Control de autoridades
  • Proyectos Wikimedia
  • Wd Datos: Q17164696
  • Wd Datos: Q17164696