Subring

Subset of a ring that forms a ring itself
Algebraic structure → Ring theory
Ring theory
Basic concepts
Rings
• Subrings
• Ideal
• Quotient ring
• Fractional ideal
Total ring of fractions
• Product of rings
• Free product of associative algebras
Tensor product of algebras

Ring homomorphisms

• Kernel
Inner automorphism
• Frobenius endomorphism

Algebraic structures

• Module
• Associative algebra
• Graded ring
• Involutive ring
• Category of rings
• Initial ring Z {\displaystyle \mathbb {Z} }
• Terminal ring 0 = Z / 1 Z {\displaystyle 0=\mathbb {Z} /1\mathbb {Z} }

Related structures

• Field
• Finite field
• Non-associative ring
Lie ring
Jordan ring
Semiring
Semifield
Commutative rings
Integral domain
Integrally closed domain
GCD domain
Unique factorization domain
Principal ideal domain
Euclidean domain
• Field
Finite field
Polynomial ring
Formal power series ring

Algebraic number theory

Algebraic number field
• Integers modulo n
Ring of integers
p-adic integers Z p {\displaystyle \mathbb {Z} _{p}}
p-adic numbers Q p {\displaystyle \mathbb {Q} _{p}}
• Prüfer p-ring Z ( p ) {\displaystyle \mathbb {Z} (p^{\infty })}
  • v
  • t
  • e

In mathematics, a subring of a ring R is a subset of R that is itself a ring when binary operations of addition and multiplication on R are restricted to the subset, and that shares the same multiplicative identity as R.[a]

Definition

A subring of a ring (R, +, *, 0, 1) is a subset S of R that preserves the structure of the ring, i.e. a ring (S, +, *, 0, 1) with SR. Equivalently, it is both a subgroup of (R, +, 0) and a submonoid of (R, *, 1).

Equivalently, S is a subring if and only if it contains the multiplicative identity of R, and is closed under multiplication and subtraction. This is sometimes known as the subring test.[1]

Variations

Some mathematicians define rings without requiring the existence of a multiplicative identity (see Ring (mathematics) § History). In this case, a subring of R is a subset of R that is a ring for the operations of R (this does imply it contains the additive identity of R). This alternate definition gives a strictly weaker condition, even for rings that do have a multiplicative identity, in that all ideals become subrings, and they may have a multiplicative identity that differs from the one of R. With the definition requiring a multiplicative identity, which is used in the rest of this article, the only ideal of R that is a subring of R is R itself.

Examples

  • Z {\displaystyle \mathbb {Z} } and its quotients Z / n Z {\displaystyle \mathbb {Z} /n\mathbb {Z} } have no subrings (with multiplicative identity) other than the full ring.[1]
  • Every ring has a unique smallest subring, isomorphic to some ring Z / n Z {\displaystyle \mathbb {Z} /n\mathbb {Z} } with n a nonnegative integer (see Characteristic). The integers Z {\displaystyle \mathbb {Z} } correspond to n = 0 in this statement, since Z {\displaystyle \mathbb {Z} } is isomorphic to Z / 0 Z {\displaystyle \mathbb {Z} /0\mathbb {Z} } .[2]

Subring generated by a set

A special kind of subring of a ring R is the subring generated by a subset X, which is defined as the intersection of all subrings of R containing X.[3] The subring generated by X is also the set of all linear combinations with integer coefficients of elements of X, including the additive identity ("empty combination") and multiplicative identity ("empty product").[citation needed]

Any intersection of subrings of R is itself a subring of R; therefore, the subring generated by X (denoted here as S) is indeed a subring of R. This subring S is the smallest subring of R containing X; that is, if T is any other subring of R containing X, then ST.

Since R itself is a subring of R, if R is generated by X, it is said that the ring R is generated by X.

Ring extension

Subrings generalize some aspects of field extensions. If S is a subring of a ring R, then equivalently R is said to be a ring extension[b] of S.

Adjoining

If A is a ring and T is a subring of A generated by RS, where R is a subring, then T is a ring extension and is said to be S adjoined to R, denoted R[S]. Individual elements can also be adjoined to a subring, denoted R[a1, a2, ..., an].[4][3]

For example, the ring of Gaussian integers Z [ i ] {\displaystyle \mathbb {Z} [i]} is a subring of C {\displaystyle \mathbb {C} } generated by Z { i } {\displaystyle \mathbb {Z} \cup \{i\}} , and thus is the adjunction of the imaginary unit i to Z {\displaystyle \mathbb {Z} } .[3]

Prime subring

The intersection of all subrings of a ring R is a subring that may be called the prime subring of R by analogy with prime fields.

The prime subring of a ring R is a subring of the center of R, which is isomorphic either to the ring Z {\displaystyle \mathbb {Z} } of the integers or to the ring of the integers modulo n, where n is the smallest positive integer such that the sum of n copies of 1 equals 0.

See also

Notes

  1. ^ In general, not all subsets of a ring R are rings.
  2. ^ Not to be confused with the ring-theoretic analog of a group extension.

References

  1. ^ a b c Dummit, David Steven; Foote, Richard Martin (2004). Abstract algebra (Third ed.). Hoboken, NJ: John Wiley & Sons. p. 228. ISBN 0-471-43334-9.
  2. ^ Lang, Serge (2002). Algebra (3 ed.). New York. pp. 89–90. ISBN 978-0387953854.{{cite book}}: CS1 maint: location missing publisher (link)[dead link]
  3. ^ a b c Lovett, Stephen (2015). "Rings". Abstract Algebra: Structures and Applications. Boca Raton: CRC Press. pp. 216–217. ISBN 9781482248913.
  4. ^ Gouvêa, Fernando Q. (2012). "Rings and Modules". A Guide to Groups, Rings, and Fields. Washington, DC: Mathematical Association of America. p. 145. ISBN 9780883853559.

General references

  • Adamson, Iain T. (1972). Elementary rings and modules. University Mathematical Texts. Oliver and Boyd. pp. 14–16. ISBN 0-05-002192-3.
  • Sharpe, David (1987). Rings and factorization. Cambridge University Press. pp. 15–17. ISBN 0-521-33718-6.