Small retrosnub icosicosidodecahedron

Uniform star polyhedron with 112 faces
Small retrosnub icosicosidodecahedron
Type Uniform star polyhedron
Elements F = 112, E = 180
V = 60 (χ = −8)
Faces by sides (40+60){3}+12{5/2}
Coxeter diagram
Wythoff symbol | 3/2 3/2 5/2
Symmetry group Ih, [5,3], *532
Index references U72, C91, W118
Dual polyhedron Small hexagrammic hexecontahedron
Vertex figure
(35.5/3)/2
Bowers acronym Sirsid
3D model of a small retrosnub icosicosidodecahedron

In geometry, the small retrosnub icosicosidodecahedron (also known as a retrosnub disicosidodecahedron, small inverted retrosnub icosicosidodecahedron, or retroholosnub icosahedron) is a nonconvex uniform polyhedron, indexed as U72. It has 112 faces (100 triangles and 12 pentagrams), 180 edges, and 60 vertices.[1] It is given a Schläfli symbol sr{⁵/₃,³/₂}.

The 40 non-snub triangular faces form 20 coplanar pairs, forming star hexagons that are not quite regular. Unlike most snub polyhedra, it has reflection symmetries.

George Olshevsky nicknamed it the yog-sothoth (after the Cthulhu Mythos deity).[2][3]

Convex hull

Its convex hull is a nonuniform truncated dodecahedron.


Truncated dodecahedron

Convex hull

Small retrosnub icosicosidodecahedron

Cartesian coordinates

Let ξ = 3 2 1 2 1 + 4 ϕ 2.866760399173862 {\displaystyle \xi =-{\frac {3}{2}}-{\frac {1}{2}}{\sqrt {1+4\phi }}\approx -2.866760399173862} be the smallest (most negative) zero of the polynomial P = x 2 + 3 x + ϕ 2 {\displaystyle P=x^{2}+3x+\phi ^{-2}} , where ϕ {\displaystyle \phi } is the golden ratio. Let the point p {\displaystyle p} be given by

p = ( ϕ 1 ξ + ϕ 3 ξ ϕ 2 ξ + ϕ 2 ) {\displaystyle p={\begin{pmatrix}\phi ^{-1}\xi +\phi ^{-3}\\\xi \\\phi ^{-2}\xi +\phi ^{-2}\end{pmatrix}}} .

Let the matrix M {\displaystyle M} be given by

M = ( 1 / 2 ϕ / 2 1 / ( 2 ϕ ) ϕ / 2 1 / ( 2 ϕ ) 1 / 2 1 / ( 2 ϕ ) 1 / 2 ϕ / 2 ) {\displaystyle M={\begin{pmatrix}1/2&-\phi /2&1/(2\phi )\\\phi /2&1/(2\phi )&-1/2\\1/(2\phi )&1/2&\phi /2\end{pmatrix}}} .

M {\displaystyle M} is the rotation around the axis ( 1 , 0 , ϕ ) {\displaystyle (1,0,\phi )} by an angle of 2 π / 5 {\displaystyle 2\pi /5} , counterclockwise. Let the linear transformations T 0 , , T 11 {\displaystyle T_{0},\ldots ,T_{11}} be the transformations which send a point ( x , y , z ) {\displaystyle (x,y,z)} to the even permutations of ( ± x , ± y , ± z ) {\displaystyle (\pm x,\pm y,\pm z)} with an even number of minus signs. The transformations T i {\displaystyle T_{i}} constitute the group of rotational symmetries of a regular tetrahedron. The transformations T i M j {\displaystyle T_{i}M^{j}} ( i = 0 , , 11 {\displaystyle (i=0,\ldots ,11} , j = 0 , , 4 ) {\displaystyle j=0,\ldots ,4)} constitute the group of rotational symmetries of a regular icosahedron. Then the 60 points T i M j p {\displaystyle T_{i}M^{j}p} are the vertices of a small snub icosicosidodecahedron. The edge length equals 2 ξ {\displaystyle -2\xi } , the circumradius equals 4 ξ ϕ 2 {\displaystyle {\sqrt {-4\xi -\phi ^{-2}}}} , and the midradius equals ξ {\displaystyle {\sqrt {-\xi }}} .

For a small snub icosicosidodecahedron whose edge length is 1, the circumradius is

R = 1 2 ξ 1 ξ 0.5806948001339209 {\displaystyle R={\frac {1}{2}}{\sqrt {\frac {\xi -1}{\xi }}}\approx 0.5806948001339209}

Its midradius is

r = 1 2 1 ξ 0.2953073837589815 {\displaystyle r={\frac {1}{2}}{\sqrt {\frac {-1}{\xi }}}\approx 0.2953073837589815}

The other zero of P {\displaystyle P} plays a similar role in the description of the small snub icosicosidodecahedron.

See also

References

  1. ^ Maeder, Roman. "72: small retrosnub icosicosidodecahedron". MathConsult.
  2. ^ Birrell, Robert J. (May 1992). The Yog-sothoth: analysis and construction of the small inverted retrosnub icosicosidodecahedron (M.S.). California State University.
  3. ^ Bowers, Jonathan (2000). "Uniform Polychora" (PDF). In Reza Sarhagi (ed.). Bridges 2000. Bridges Conference. pp. 239–246.
  • Weisstein, Eric W. "Small retrosnub icosicosidodecahedron". MathWorld.
  • Klitzing, Richard. "3D star small retrosnub icosicosidodecahedron".


  • v
  • t
  • e