Hellings-Downs curve

Gravitational wave detection tool
Hellings-Downs curve shown in the purple dashed line. The blue points with error bars represent the results from correlating pairs of pulsars. (GWB = gravitational wave background).[1]

The Hellings-Downs curve (also known as the Hellings and Downs curve) is an analytical tool that helps to find patterns in pulsar timing data in an effort to detect long wavelength ( λ = 1 10 l y ) {\displaystyle (\lambda =1-10ly)} gravitational waves.[2][3][4] More precisely, the Hellings-Downs curve refers to the wave-like shape predicted to appear in a plot of timing residual correlations versus the angle of separation between pairs of pulsars.[5][6] This theoretical correlation function assumes a gravitational wave background that is isotropic and Einsteinian.[7][8]

Pulsar timing array residuals

Pulsar timing residuals from the Parkes pulsar timing array. Data has been noise reduced to isolate gravitational wave effects.[9]

Albert Einstein's theory of general relativity predicts that a mass will deform spacetime causing gravitational waves to emanate outward from the source.[10] These gravitational waves will affect the travel time of any light that interacts with them. A pulsar timing residual is the difference between the expected time of arrival and the observed time of arrival of light from pulsars.[2] Because pulsars flash with such a consistent rhythm, it is hypothesised that if a gravitational wave is present, a pattern may be observed in the changing arrival times of these pulsar emissions. The Hellings-Downs curve is used to infer the presence gravitational waves by finding patterns in the pulsar residual data. Pulsar timing residuals are measured using pulsar timing arrays.[11]

History

Not long after the first suggestions of pulsars being used for gravitational wave detection in the late 1970’s,[12][13] Donald Backer discovered the first millisecond pulsar in 1982.[14] The following year Ron Hellings and George Downs published the foundations of the Hellings-Downs curve in their 1983 paper "Upper Limits on the Isotropic Gravitational Radiation Background from Pulsar Timing Analysis".[7] Donald Backer would later go on to become one of the founders of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav).[1][14]

Examples in the scientific literature

In 2023, NANOGrav used pulsar timing array data collected over 15 years in their latest publications supporting the existence of a gravitational wave background.[1] A total of 2,211 millisecond pulsar pair combinations (67 individual pulsars) were used by the NANOGrav team to construct their Hellings-Downs plot comparison.[15] The NANOGrav team wrote that "The observation of Hellings–Downs correlations points to the gravitational-wave origin of this signal."[4] This highlights the role that the Hellings-Downs curve plays in contemporary gravitational wave research.

Equation of the Hellings-Downs curve

Reardon et al. (2023) from the Parkes pulsar timing array team give the following equation for the Hellings-Downs curve:[16]

Γ a b = 1 2 δ a b + 1 2 x a b 4 + 3 2 x a b l n x a b {\displaystyle \Gamma _{ab}={\frac {1}{2}}\delta _{ab}+{\frac {1}{2}}-{\frac {x_{ab}}{4}}+{\frac {3}{2}}x_{ab}lnx_{ab}}

Where:

x a b = ( 1 c o s ζ a b ) / 2 {\displaystyle x_{ab}=(1-cos\zeta _{ab})/2} ,

δ a b {\displaystyle \delta _{ab}} is the kronecker delta function

ζ a b {\displaystyle \zeta _{ab}} represents the angle of separation between the two pulsars as seen from earth

Γ a b {\displaystyle \Gamma _{ab}} is the angular correlation function.

This curve assumes an isotropic gravitational wave background from a supermassive black hole binary system.

References

  1. ^ a b c "Evidence for a Gravitational-Wave Background | NANOGrav". nanograv.org. Retrieved 2024-02-18.
  2. ^ a b Romano, Joseph D.; Allen, Bruce (2024-01-29), Answers to frequently asked questions about the pulsar timing array Hellings and Downs curve, arXiv:2308.05847
  3. ^ Jenet, Fredrick A.; Romano, Joseph D. (2015-07-01). "Understanding the gravitational-wave Hellings and Downs curve for pulsar timing arrays in terms of sound and electromagnetic waves". American Journal of Physics. 83 (7): 635–645. arXiv:1412.1142. Bibcode:2015AmJPh..83..635J. doi:10.1119/1.4916358. ISSN 0002-9505. S2CID 116950137.
  4. ^ a b Agazie, Gabriella; Anumarlapudi, Akash; Archibald, Anne M.; Arzoumanian, Zaven; Baker, Paul T.; Bécsy, Bence; Blecha, Laura; Brazier, Adam; Brook, Paul R.; Burke-Spolaor, Sarah; Burnette, Rand; Case, Robin; Charisi, Maria; Chatterjee, Shami; Chatziioannou, Katerina (2023-07-01). "The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background". The Astrophysical Journal Letters. 951 (1): L8. arXiv:2306.16213. Bibcode:2023ApJ...951L...8A. doi:10.3847/2041-8213/acdac6. ISSN 2041-8205.
  5. ^ Allen, Bruce (2023-02-15). "Variance of the Hellings-Downs correlation". Physical Review D. 107 (4): 043018. arXiv:2205.05637. Bibcode:2023PhRvD.107d3018A. doi:10.1103/PhysRevD.107.043018. ISSN 2470-0010.
  6. ^ Allen, Bruce; Romano, Joseph D. (2023-08-24). "Hellings and Downs correlation of an arbitrary set of pulsars". Physical Review D. 108 (4): 043026. arXiv:2208.07230. Bibcode:2023PhRvD.108d3026A. doi:10.1103/PhysRevD.108.043026.
  7. ^ a b Hellings, R. W.; Downs, G. S. (1983-02-01). "Upper limits on the isotropic gravitational radiation background from pulsar timing analysis". The Astrophysical Journal. 265: L39. Bibcode:1983ApJ...265L..39H. doi:10.1086/183954. ISSN 0004-637X.
  8. ^ Chiara Mingarelli: Pulsar Timing Arrays, retrieved 2024-02-18
  9. ^ Reardon, Daniel J.; Zic, Andrew; Shannon, Ryan M.; Di Marco, Valentina; Hobbs, George B.; Kapur, Agastya; Lower, Marcus E.; Mandow, Rami; Middleton, Hannah; Miles, Matthew T.; Rogers, Axl F.; Askew, Jacob; Bailes, Matthew; Bhat, N. D. Ramesh; Cameron, Andrew (2023-07-01). "The Gravitational-wave Background Null Hypothesis: Characterizing Noise in Millisecond Pulsar Arrival Times with the Parkes Pulsar Timing Array". The Astrophysical Journal Letters. 951 (1): L7. arXiv:2306.16229. Bibcode:2023ApJ...951L...7R. doi:10.3847/2041-8213/acdd03. ISSN 2041-8205.
  10. ^ "GP-B — Einstein's Spacetime". einstein.stanford.edu. Retrieved 2024-02-18.
  11. ^ "Pulsar Timing Arrays". www.aei.mpg.de. Retrieved 2024-02-18.
  12. ^ Sazhin, M. V. (1978-02-01). "Opportunities for detecting ultralong gravitational waves". Soviet Astronomy. 22: 36–38. Bibcode:1978SvA....22...36S.
  13. ^ Detweiler, S. (1979-12-01). "Pulsar timing measurements and the search for gravitational waves". The Astrophysical Journal. 234: 1100–1104. Bibcode:1979ApJ...234.1100D. doi:10.1086/157593. ISSN 0004-637X.
  14. ^ a b "After 15 years, pulsar timing yields evidence of cosmic gravitational wave background". Berkeley. 2022. Retrieved 2024-02-18.
  15. ^ "The fingerprint of a cosmos swirling with gravitational waves". Physics Today. Retrieved 2024-02-18.
  16. ^ Reardon, Daniel J.; Zic, Andrew; Shannon, Ryan M.; Hobbs, George B.; Bailes, Matthew; Di Marco, Valentina; Kapur, Agastya; Rogers, Axl F.; Thrane, Eric; Askew, Jacob; Bhat, N. D. Ramesh; Cameron, Andrew; Curyło, Małgorzata; Coles, William A.; Dai, Shi (2023-07-01). "Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array". The Astrophysical Journal Letters. 951 (1): L6. arXiv:2306.16215. Bibcode:2023ApJ...951L...6R. doi:10.3847/2041-8213/acdd02. ISSN 2041-8205.