Boron monofluoride

Boron monofluoride
Names
Other names
Boron fluoride

Boron(I) fluoride
Fluoroboronene

Fluoroborylene
Identifiers
CAS Number
  • 13768-60-0 checkY
3D model (JSmol)
  • Interactive image
  • Interactive image
  • Interactive image
ChemSpider
  • 4891729 checkY
ECHA InfoCard 100.033.970 Edit this at Wikidata
EC Number
  • 237-383-0
PubChem CID
  • 6336604
UNII
  • N01K2O1ZJH checkY
CompTox Dashboard (EPA)
  • DTXSID501317099 Edit this at Wikidata
InChI
  • InChI=1S/BF/c1-2 checkY
    Key: YFSQMOVEGCCDJL-UHFFFAOYSA-N checkY
  • [BH0]F
  • [B-]=[F+]
  • [B-2]#[F+2]
Properties
Chemical formula
BF
Molar mass 29.81 g·mol−1
Thermochemistry
Std molar
entropy (S298)
200.48 J K−1 mol−1
Std enthalpy of
formation fH298)
115.90 kJ mol−1
Related compounds
Related isoelectronic compounds
Carbon monoxide, dinitrogen, nitrosonium, cyanide, acetylide
Related compounds
aluminium monofluoride
aluminium monochloride
aluminium monoiodide
gallium monofluoride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references
Chemical compound

Boron monofluoride or fluoroborylene is a chemical compound with the formula BF, one atom of boron and one of fluorine. It is an unstable gas, but it is a stable ligand on transition metals, in the same way as carbon monoxide. It is a subhalide, containing fewer than the normal number of fluorine atoms, compared with boron trifluoride. It can also be called a borylene, as it contains boron with two unshared electrons. BF is isoelectronic with carbon monoxide and dinitrogen; each molecule has 14 electrons.[1]

Structure

The experimental B–F bond length is 1.26267 Å.[2][3][4] Despite being isoelectronic to the triple-bonded species CO and N2, computational studies generally agree that the true bond order is much lower than 3. One reported computed bond order for the molecule is 1.4, compared with 2.6 for CO and 3.0 for N2.[5]

Lewis dot diagram structures show three formal alternatives for describing bonding in boron monofluoride.

BF is unusual in that the dipole moment is inverted with fluorine having a positive charge even though it is the more electronegative element. This is explained by the 2sp orbitals of boron being reoriented and having a higher electron density. Backbonding, or the transfer of π orbital electrons for the fluorine atom, is not required to explain the polarization.[6]

Preparation

Boron monofluoride can be prepared by passing boron trifluoride gas at 2000 °C over a boron rod. It can be condensed at liquid nitrogen temperatures (−196 °C).[7]

Properties

Boron monofluoride molecules have a dissociation energy of 7.8 eV or heat of formation −27.5±3 kcal/mole[1][8] or 757±14 kJ/mol.[2] The first ionization potential is 11.115 eV.[2] The spectroscopic constants vibrational frequency ωe of BF+ (X 2Σ+) is 1765 cm−1 and for neutral BF (X 1Σ+) it is 1402.1 cm−1.[2][9] The anharmonicity of BF is 11.84 cm−1.[9]

Reactions

BF can react with itself to form polymers of boron containing fluorine with between 10 and 14 boron atoms. BF reacts with BF3 to form B2F4. BF and B2F4 further combine to form B3F5. B3F5 is unstable above −50 °C and forms B8F12. This substance is a yellow oil.[7]

BF reacts with acetylenes to make the 1,4-diboracyclohexadiene ring system. BF can condense with 2-butyne forming 1,4-difluoro-2,3,5,6-tetramethyl-1,4-diboracyclohexadiene. Also, it reacts with acetylene to make 1,4-difluoro-1,4-diboracyclohexadiene.[7] Propene reacts to make a mix of cyclic and non-cyclic molecules which may contain BF or BF2.[2]

BF hardly reacts with C2F4 or SiF4.[2] BF does react with arsine, carbon monoxide, phosphorus trifluoride, phosphine, and phosphorus trichloride to make adducts like (BF2)3B•AsH3, (BF2)3B•CO, (BF2)3B•PF3, (BF2)3B•PH3, and (BF2)3B•PCl3.[2]

BF reacts with oxygen: BF + O2OBF + O; with chlorine: BF + Cl2 → ClBF + Cl; and with nitrogen dioxide BF + NO2OBF + NO.[10]

Ligand

A naïve analysis would suggest that BF is isoelectronic with carbon monoxide (CO) and so could form similar compounds to metal carbonyls. As discussed above (see § Structure), BF has a much lower bond order, so that the valence shell around boron is unfilled. Consequently, BF as a ligand is much more Lewis acidic; it tends to form higher-order bonds to metal centers, and can also bridge between two or three metal atoms (μ2 and μ3).[11]

Working with BF as a ligand is difficult due to its instability in the free state.[12] Instead, most routes tend to use derivatives of BF3 that decompose once coordinated.

In a 1968 conference report, Kämpfer et al claimed to produce Fe(BF)(CO)4 via reaction of B2F4 with Fe(CO)5, but modern chemists have not reproduced the synthesis, and the original compound has no crystallographic characterization.[13][14] The first modern demonstration of BF coordinated to a transition element is due to Vidovic and Aldrige, who produced [(C5H5)Ru(CO)2]22-BF) (with BF bridging both ruthenium atoms) in 2009.[15] To make the compound, Vidovic and Aldridge reacted NaRu(CO)2(C5H5) with (Et2O)·BF3; the boron monofluoride ligand then formed in-place.[14]

Vidovic and Aldridge also developed a substance with the formula (PF3)4FeBF by reacting iron vapour with B2F4 and PF3.[2] Hafnium, thorium, titanium, and zirconium can form a difluoride with a BF ligand at the low temperature of 6K. These come about by reacting the atomic metal with BF3.[2]

The first fully characterized molecule featuring BF as a terminal ligand was synthesized by Drance and Figueroa in 2019, by sterically hindering the formation of a dimer. In the molecule, boron is double-bonded to iron.[16]

FBScF2, FBYF2, FBLaF2, and FBCeF2 have been prepared in a solid neon matrix by reacting atomic metals with boron trifluoride.[17]

References

  1. ^ a b Hildenbrand, Donald L.; Murad, Edmond (1965). "Dissociation Energy of Boron Monofluoride from Mass-Spectrometric Studies". The Journal of Chemical Physics. 43 (4): 1400. Bibcode:1965JChPh..43.1400H. doi:10.1063/1.1696932.
  2. ^ a b c d e f g h i Vidovic, Dragoslav; Aldridge, Simon (2011). "Coordination chemistry of group 13 monohalides". Chemical Science. 2 (4): 601. doi:10.1039/C0SC00508H.
  3. ^ Nesbet, R. K. (1964). "Electronic Structure of N2, CO, and BF". The Journal of Chemical Physics. 40 (12): 3619–3633. Bibcode:1964JChPh..40.3619N. doi:10.1063/1.1725063.
  4. ^ Cazzoli, G.; Cludi, L.; Degli Esposti, C.; Dore, L. (1989). "The millimeter and submillimeter-wave spectrum of boron monofluoride: Equilibrium structure". Journal of Molecular Spectroscopy. 134 (1): 159–167. Bibcode:1989JMoSp.134..159C. doi:10.1016/0022-2852(89)90138-0. ISSN 0022-2852.
  5. ^ Martinie, R. J.; Bultema, J. J.; van der Wal, M. N.; Burkhart, B. J.; van der Griend, D. A. & de Kock, R. L. (2011). "Bond Order and Chemical Properties of BF, CO, and N2". Journal of Chemical Education. 88 (8): 1094–1097. Bibcode:2011JChEd..88.1094M. doi:10.1021/ed100758t.
  6. ^ Fantuzzi, Felipe; Cardozo, Thiago Messias; Nascimento, Marco Antonio Chaer (28 May 2015). "Nature of the Chemical Bond and Origin of the Inverted Dipole Moment in Boron Fluoride: A Generalized Valence Bond Approach". The Journal of Physical Chemistry A. 119 (21): 5335–5343. Bibcode:2015JPCA..119.5335F. doi:10.1021/jp510085r. PMID 25531385.
  7. ^ a b c Timms, P. L. (1972). "Low Temperature Condensation". Advances in Inorganic Chemistry and Radiochemistry. Academic Press. p. 143. ISBN 0-12-023614-1.
  8. ^ Eyring, Leroy (1967). Advances in High Temperature Chemistry volume 1. Academic Press. p. 70. ISBN 9781483224343.
  9. ^ a b Dyke, John M.; Kirby, Colin; Morris, Alan (1983). "Study of the ionization process BF+ (X 2Σ+ ) ← BF(X 1Σ+ ) by high-temperature photoelectron spectroscopy". J. Chem. Soc., Faraday Trans. 2. 79 (3): 483–490. doi:10.1039/F29837900483.
  10. ^ Light, G. C.; Herm, R. R.; Matsumoto, J. H. (November 1985). "Kinetics of some gas-phase elementary reactions of boron monofluoride" (PDF). The Journal of Physical Chemistry. 89 (23): 5066–5074. doi:10.1021/j100269a036. Archived (PDF) from the original on June 1, 2022.
  11. ^ Xu, Liancai; Li, Qian-shu; Xie, Yaoming; King, R. Bruce; Schaefer, Henry F. (15 March 2010). "Major Difference between the Isoelectronic Fluoroborylene and Carbonyl Ligands: Triply Bridging Fluoroborylene Ligands in Fe3(BF)3(CO)9 Isoelectronic with Fe3(CO)12". Inorganic Chemistry. 49 (6): 2996–3001. doi:10.1021/ic902511m. PMID 20143841.
  12. ^ Xu, Liancai; Li, Qian-shu; King, R. Bruce (May 2012). "Fluoroborylene ligands in binuclear ruthenium carbonyls: Comparison with their iron analogues". Polyhedron. 38 (1): 44–49. doi:10.1016/j.poly.2012.02.003.
  13. ^ Drance et al. 2019: "Previously, Vidovic and Aldridge reported that two equivalents of the ruthenium-based nucleophile Na[CpRu(CO)2] (Cp, cyclopentadienyl; [C5H5]) reacts with boron trifluoride diethyl etherate (BF·
    3
    Et
    2
    O
    ) with the formal loss of two equivalents of sodium fluoride (NaF) to produce the bridging BF complex (2-BF)[CpRu(CO)2]2) (20). The latter is the only crystallographically characterized compound in which BF functions as a ligand to a metal center."
  14. ^ a b Xu, L.; Li, Q.-S.; Xie, Y.; King, R. B.; Schaefer, H. F. III (2010). "Binuclear fluoroborylene manganese carbonyls". Inorganica Chimica Acta. 363 (13): 3538–3549. doi:10.1016/j.ica.2010.07.013.
  15. ^ Vidovic, Dragoslav; Aldridge, Simon (4 May 2009). "Coordination and Activation of the BF Molecule". Angewandte Chemie. 121 (20): 3723–3726. Bibcode:2009AngCh.121.3723V. doi:10.1002/ange.200901022. PMID 19373822.
  16. ^ Drance, M. J.; Sears, J. D.; Mrse, A. M.; Moore, C. E.; Rheingold, A. L.; Neidig, M. L.; Figueroa, J. S. (2019). "Terminal Coordination of Diatomic Boron Monofluoride to Iron". Science. 363 (6432): 1203–1205. Bibcode:2019Sci...363.1203D. doi:10.1126/science.aaw6102. PMID 30872521. S2CID 78094683.
  17. ^ Xu, Bing; Li, Li; Pu, Zhen; Yu, Wenjie; Li, Wenjing; Wang, Xuefeng (18 February 2019). "Fluoroborylene Complexes FBMF 2 (M = Sc, Y, La, Ce): Matrix Infrared Spectra and Quantum Chemical Calculations". Inorganic Chemistry. 58 (4): 2363–2371. doi:10.1021/acs.inorgchem.8b02801.
  • v
  • t
  • e
Boron pnictogenidesBoron halides
  • BBr3
  • BCl3
  • BF
  • BFO
  • BF3
  • BI3
  • B2F4
  • B2Cl4
Acids
  • B(NO3)3
  • B(OH)3
  • BPO4
  • BH3O
Boranes
  • BH3
  • B2H4
  • B2H6
  • BH3NH3
  • B4H10
  • B5H9
  • B5H11
  • B6H10
  • B6H12
  • B10H14
  • B18H22
Boron oxides and sulfides
  • B2O
  • B2O3
  • B2S3
  • B6O
Carbides
  • B4C
Organoboron compounds
  • (BH2Me)2
  • BMe3
  • BEt3
  • Ac4(BO3)2
  • COBH3
  • v
  • t
  • e
  • v
  • t
  • e
Salts and covalent derivatives of the fluoride ion
HF ?HeF2
LiF BeF2 BF
BF3
B2F4
+BO3
CF4
CxFy
+CO3
NF3
FN3
N2F2
NF
N2F4
NF2
?NF5
OF2
O2F2
OF
O3F2
O4F2
?OF4
F2 Ne
NaF MgF2 AlF
AlF3
SiF4 P2F4
PF3
PF5
S2F2
SF2
S2F4
SF3
SF4
S2F10
SF6
+SO4
ClF
ClF3
ClF5
?ArF2
?ArF4
KF CaF
CaF2
ScF3 TiF2
TiF3
TiF4
VF2
VF3
VF4
VF5
CrF2
CrF3
CrF4
CrF5
?CrF6
MnF2
MnF3
MnF4
?MnF5
FeF2
FeF3
FeF4
CoF2
CoF3
CoF4
NiF2
NiF3
NiF4
CuF
CuF2
?CuF3
ZnF2 GaF2
GaF3
GeF2
GeF4
AsF3
AsF5
Se2F2
SeF4
SeF6
+SeO3
BrF
BrF3
BrF5
KrF2
?KrF4
?KrF6
RbF SrF
SrF2
YF3 ZrF2
ZrF3
ZrF4
NbF4
NbF5
MoF4
MoF5
MoF6
TcF4
TcF
5

TcF6
RuF3
RuF
4

RuF5
RuF6
RhF3
RhF4
RhF5
RhF6
PdF2
Pd[PdF6]
PdF4
?PdF6
Ag2F
AgF
AgF2
AgF3
CdF2 InF
InF3
SnF2
SnF4
SbF3
SbF5
TeF4
?Te2F10
TeF6
+TeO3
IF
IF3
IF5
IF7
+IO3
XeF2
XeF4
XeF6
?XeF8
CsF BaF2   LuF3 HfF4 TaF5 WF4
WF5
WF6
ReF4
ReF5
ReF6
ReF7
OsF4
OsF5
OsF6
?OsF
7

?OsF
8
IrF2
IrF3
IrF4
IrF5
IrF6
PtF2
Pt[PtF6]
PtF4
PtF5
PtF6
AuF
AuF3
Au2F10
?AuF6
AuF5•F2
Hg2F2
HgF2
?HgF4
TlF
TlF3
PbF2
PbF4
BiF3
BiF5
?PoF2
PoF4
PoF6
AtF
?AtF3
?AtF5
RnF2
?RnF
4

?RnF
6
FrF RaF2   LrF3 Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
LaF3 CeF3
CeF4
PrF3
PrF4
NdF2
NdF3
NdF4
PmF3 SmF2
SmF3
EuF2
EuF3
GdF3 TbF3
TbF4
DyF2
DyF3
DyF4
HoF3 ErF3 TmF2
TmF3
YbF2
YbF3
AcF3 ThF3
ThF4
PaF4
PaF5
UF3
UF4
UF5
UF6
NpF3
NpF4
NpF5
NpF6
PuF3
PuF4
PuF5
PuF6
AmF2
AmF3
AmF4
?AmF6
CmF3
CmF4
 ?CmF6
BkF3
BkF
4
CfF3
CfF4
EsF3
EsF4
?EsF6
Fm Md No
PF6, AsF6, SbF6 compounds
  • AgPF6
  • KAsF6
  • LiAsF6
  • NaAsF6
  • HPF6
  • HSbF6
  • NH4PF6
  • LiSbF6
  • KPF6
  • KSbF6
  • LiPF6
  • NaPF6
  • NaSbF6
  • TlPF6
AlF6 compounds
  • (NH4)3[AlF6]
  • Cs2AlF5
  • Li3AlF6
  • K3AlF6
  • Na3AlF6
chlorides, bromides, iodides
and pseudohalogenides
SiF62-, GeF62- compounds
  • BaSiF6
  • BaGeF6
  • (NH4)2SiF6
  • Na2[SiF6]
  • K2[SiF6]
  • Li2GeF6
  • Li2SiF6
Oxyfluorides
  • BrOF3
  • BrO2F
  • BrO3F
  • LaOF
  • ThOF2
  • VOF
    3
  • TcO
    3
    F
  • WOF
    4
  • YOF
  • ClOF3
  • ClO2F3
Organofluorides
  • CBrF3
  • CBr2F2
  • CBr3F
  • CClF3
  • CCl2F2
  • CCl3F
  • CF2O
  • CF3I
  • CHF3
  • CH2F2
  • CH3F
  • C2Cl3F3
  • C2H3F
  • C6H5F
  • C7H5F3
  • C15F33N
  • C3H5F
  • C6H11F
with transition metal,
lanthanide, actinide, ammonium
  • VOF3
  • CrOF4
  • CrF2O2
  • NH4F
  • (NH4)3CrF6
  • (NH4)3GaF6
  • (NH4)2GeF6
  • (NH4)3FeF6
  • (NH4)3InF6
  • NH4NbF6
  • (NH4)2SnF6
  • NH4TaF6
  • (NH4)3VF6
  • (NH4)2ZrF6
  • CsXeF7
  • Li2SnF6
  • Li2TiF6
  • LiWF6
  • Li2ZrF6
  • K2TiF6
  • Rb2TiF6
  • Na2TiF6
  • Na2ZrF6
  • K2NbF7
  • K2TaF7
  • K2ZrF6
  • UO2F2
nitric acids
bifluorides
  • KHF2
  • NaHF2
  • NH4HF2
thionyl, phosphoryl,
and iodosyl
  • F2OS
  • F3OP
  • PSF3
  • IOF3
  • IO3F
  • IOF5
  • IO2F
  • IO2F3